© 1998 r. A.B. KA3AKOB

ВЛИЯНИЕ ОБЪЕМНОГО ПОДВОДА ЭНЕРГИИ НА ЗАКРУЧЕННЫЕ ТЕЧЕНИЯ В СПУТНОМ ДОЗВУКОВОМ ПОTOKE

Abstract

Проведены численные исследования влияяния подвода тепла на закрученное течение вязкого теплопроводного газа в спутном дозвуковом потоке. Рассмотрен начальный этап развития закрученного течения вблизи оси вихря с постоянной величиной циркуляции во внешней области течения для двух начальных распределений продольной составляющей вектора скорости, моделирующих закрученное течение струйного типа и течение в следе с дефицитом продольной скорости. Исследовано влияние локального объемного подвода энергии вблизи оси вихря, величины циркуляции окружной составляющей скорости и внешнего продольного градиента давления в невязком потоке на развитие закрученного течения и процесс разрушения спутных завихренных течений.

K завихренным течениям, представляющим большой практический интерес, относятся прежде всего вихри, сходящие с законцовок крыльев большого удлинения и простирающиеся затем на большие расстояния в следе за самолетом, и закрученные течения в каналах и трубах. Другим важным примером могут служить вихри, формирующиеся вблизи острых кромок треугольных крыльев, обтекаемых под большим углом атаки.

Математическое. моделирование таких сложных трехмерных течений, характеристик их устойчивости и в особенности адекватное описание процесса распада и разрушения вихрей [1] в газовых потоках являются одной из важных задач аэродинамики. В большинстве исследований [2-7] завихренные течения, их устойчивость [89] и процессы разрушения вихрей рассматривались в рамках модели несжимаемой жидкости.

Физические механизмы разрушения первоначально устойчивых вихревых течений, а также роль сжимаемости и подвода тепла в окрестности ядра вихря в спутном дозвуковом потоке остаются до сих пор полностью не выясненными. Можно ожидать, что характеристики устойчивости завихренных течений будут существенно изменяться при учете сжимаемости и теплопроводности газа [10-13]. Настоящая работа посвящена изучению влияния объемного подвода тепла вблизи оси закрученного потока на эволюцию вихря в спутном дозвуковом потоке вязкого теплопроводного газа.

1. Постановка задачи. Рассматривается стационарное осесимметричное течение вязкого теплопроводного газа. Будем полагать, что вне ядра вихря течение однородно, а циркуляция скорости в потоке вне ядра вихря постоянна. Введем обозначения: l^{*} - длина, характеризующая продольный масштаб течения, $u_{0}^{*}, \rho_{0}^{*}, \mu_{0}^{*}, h_{0}^{*}-$ скорость, плотность, коэффициент динамической вязкости и энтальпия в невозмущенном потоке; $l^{*} x, l^{*} r, \varphi$ - цилиндрические координаты с осью x, совпадающей с осью симметрии вихря $r=0, u_{0}^{*} v_{x}, u_{0}^{*} v_{r}, u_{0}^{*} v_{\varphi}$ - проекции вектора скорости, $\rho_{0}^{*} \rho, \mu_{0}^{*} \mu, \rho_{0}^{*} u_{0}^{* 2} p, u_{0}^{* 2} h-$ плотность; коэффициент динамической вязкости, давление и энтальпия соответственно, $\operatorname{Re}=\rho_{0}^{*} u_{0}^{*} l_{0}^{*} / \mu_{0}^{*}$ - характерное число Рейнольдса.

Так как циркуляция вне вязкого ядра вихря в невязкой области течения постоянна, для вихря в спутном потоке удобно ввести новую переменную $V_{\varphi}=v_{\varphi} r$, которая фактически представляет собой циркуляцию окружной составляющей скорости, деленную на 2π. Уравнение импульса для V_{φ} имеет вид

$$
\rho V_{x} \frac{\partial V_{\varphi}}{\partial x}+\rho v_{r} \frac{\partial V_{\varphi}}{\partial r}=\frac{1}{\operatorname{Re}}\left(\frac{\partial}{\partial r} \mu\left(\frac{\partial V_{\varphi}}{\partial r}\right)-\frac{\mu}{r} \frac{\partial V_{\varphi}}{\partial r}-\frac{2 V_{\varphi}}{r} \frac{\partial \mu}{\partial r}\right)
$$

При больших числах Re можно считать, что действие вязких сил сосредоточено в области ядра вихря, толщина которого может определяться, например, толщиной пограничного слоя, сформировавшегося на обтекаемом теле. В области внешнего потенциального течения, где $x \cong O(1), r=O(1)$, при $\operatorname{Re} \gg 1$, течение можно полагать невозмущенным (или слабо возмущенным при наличии внешнего градиента давления). В вязком ядре вихря решение при больших числах Re удобно искать в переменных

$$
\begin{equation*}
x_{1}=x, r_{1}=r \operatorname{Re}^{1 / 2}, V_{r}=\operatorname{Re}^{1 / 2} v_{r}, V_{\varphi 1}=\operatorname{Re}^{1 / 2} V_{\varphi} \tag{1.1}
\end{equation*}
$$

В новых переменных система уравнений, описывающая течение в вязком ядре вихря, имеет вид

$$
\begin{aligned}
& \frac{\partial \rho V_{x}}{\partial x_{1}}+\frac{\rho V_{r}}{r_{1}}+\frac{\partial \rho V_{r}}{\partial r_{1}}=0, \quad p=\frac{\gamma-1}{\gamma} \rho h \\
& \rho V_{x} \frac{\partial V_{x}}{\partial x_{1}}+\rho V_{r} \frac{\partial V_{x}}{\partial r_{1}}=-\frac{\partial p}{\partial x_{1}}+\left(\frac{\partial}{\partial r_{1}}\left(\mu \frac{\partial V_{x}}{\partial r_{1}}\right)+\frac{\mu}{r_{1}} \frac{\partial V_{x}}{\partial r_{1}}\right) \\
& \frac{\rho V_{\varphi 1}^{2}}{r_{1}^{3}}=\frac{\partial p}{\partial r_{1}} \\
& \rho V_{x} \frac{\partial V_{\varphi 1}}{\partial x_{1}}+\rho V_{r} \frac{\partial V_{\varphi 1}}{\partial r_{1^{\prime}}}=\left(\frac{\partial}{\partial r_{1}} \mu\left(\frac{\partial V_{\varphi 1}}{\partial r_{1}}\right)-\frac{\mu}{r_{1}} \frac{\partial V_{\varphi 1}}{\partial r_{1}}-\frac{2 V_{\varphi 1}}{r_{1}} \frac{\partial \mu}{\partial r_{1}}\right) \\
& \rho V_{x} \frac{\partial h}{\partial x_{1}}+\rho V_{r} \frac{\partial h}{\partial r_{1}}=V_{x} \frac{\partial p}{\partial x_{1}}+\frac{\rho V_{r} V_{\varphi 1}^{2}}{r_{1}}+\frac{1}{\sigma}\left[\frac{1}{r_{1}} \frac{\partial}{\partial r_{1}}\left(\mu r_{1} \frac{\partial h}{\partial r_{1}}\right)\right]+ \\
& +\mu\left(\left(\frac{\partial V_{x}}{\partial r_{1}}\right)^{2}+\left(\frac{1}{r_{1}} \frac{\partial V_{\varphi 1}}{\partial r_{1}}-\frac{2 V_{\varphi 1}}{r_{1}}\right)^{2}\right)+Q\left(x_{1}, r_{1}\right) \\
& r_{1}=0: V_{r}=0, \frac{\partial V_{x}}{\partial r_{1}}=0, V_{\varphi 1}=0, \frac{\partial h}{\partial r_{1}}=0 \\
& r_{1} \rightarrow \infty: V_{x}=V_{x e}\left(x_{1}\right), V_{\varphi 1}=V_{\varphi l_{2}}=\text { const, } h=h_{e}\left(x_{1}\right) \\
& x_{1}=0: V_{x}=V_{x 0}\left(r_{1}\right), V_{\varphi 1}=V_{\varphi 10}\left(r_{1}\right), h=h_{0}\left(r_{1}\right)
\end{aligned}
$$

Здесь приведены также краевые условия на оси симметрии, внешней границе вязкой завихренной области течения и начальные условия при $x_{1}=0$. Система уравнений (1.2) является по существу системой композитного типа и представляет собой аналог квазицилиндрического приближения, использованного в [18, 19] длля описания закрученного течения несжимаемой жидкости.

Течение вне вязкой области предполагается изоэнтропическим и однородным (все функции течения остаются постоянными вдоль оси вихря) либо с наложенным извне

продольным градиентом давления: $V_{x e}\left(x_{1}\right), h=h_{e}\left(x_{1}\right), p=P_{e}\left(x_{1}\right), \mathrm{M}=\mathrm{M}_{e}\left(x_{1}\right)$. Коэффициент динамической вязкости предполагается зависящим от температуры (энтальпии) по степенному закону $\mu / \mu_{0}=\left(h / h_{0}\right)^{\omega}$. Здесь и в (1.2) М - число Маха, σ - число Прандтля, γ - показатель адиабаты. В расчетах принято $\omega=0,7, \sigma=0,75, \gamma=1,4$.

Для интегрирования краевой задачи (1.2) использовалась конечно-разностная аппроксимация уравнений второго порядка точности по координате r_{1} и первого порядка точности по продольной координате x_{1}. Решение конечно-разностных уравнений находилось итерационным способом с помощью двухточечной прогонки, предложенной в [14] для решения систем параболических уравнений.

В отличие от незакрученных течений ($V_{\varphi} \equiv 0$) для рассматриваемого класса завихренных течений распределение давления поперек вихря в каждом его сечении находится в процессе итераций.

В расчетах использовалась неравномерная сетка, задаваемая геометрической прогрессией с шагом $\Delta_{m}=1,005-1,01$ и имеющая от 900 до 1300 узлов при постоянной внешней координате $r_{c}=$ $=17$. Итерации считались сошедшимися, когда максимальная относительная ошибка при расчете компонент скорости и температуры оказывалась меньше 10^{-5}.
2. Результаты расчетов. Проведены расчеты течения вязкого теплопроводного газа вблизи оси вихря в спутном потоке. В начальном сечении задавались распределения скорости

$$
V_{x 0}=1+\alpha \exp \left(-\beta r_{1}^{2}\right), \quad V_{\varphi 10}=V_{\varphi 1 c}\left(1-\exp \left(-\beta r_{1}^{2}\right)\right)
$$

Начальное распределение соответствует распределениям скорости в " q "-вихре [7-9] в спутном потоке, а профиль V_{φ} полностью идентичен распределению тангенциальной составляющей скорости в'модели вихря Ламба-Озеена [7-9, 15-16].

Параметр α позволяет получать различные распределения V_{x} вблизи оси вихря: $\alpha=0$ соответствует однородному потоку в его начальном сечении, $\alpha>0$ завихренному течению струйного типа, $\alpha<0$ - завихренному течению в следе. Распределение энтальпии в начальном сечении предполагалось однородным по пространству: $h_{0}\left(r_{1}\right)=h_{e}\left(x_{1}=0\right)$. В расчетах принималось $\operatorname{Re}=300$, в начальном сечении при $r_{1}=0$ число Маха $\mathbf{M}_{0}=0,8, \beta=3$.

Известно, что градиент давления во внешнем потоке способствует более раннему разрушению вихревого течения при $d P_{e} / d x>0$, и, наоборот, его затягиванию, если $d P_{e} / d x<0$. Однако даже при $d P_{e} / d x<0$ диффузия завихренности и перестройка профилей скорости приводят к появлению неблагоприятного градиента давления вблизи оси вихря. Это вызывает торможение потока, уменьшение V_{x} и изменение величины циркуляции окружной скорости V_{φ} вблизи оси вихря, что может приводить к разрушению вихря. Детальное рассмотрение динамики завихренности внутри вихревой нити в несжимаемой жидкости проведено в [17].

Численные результаты показывают, что в некотором сечении $x=x_{0}$ в решении параболической системы уравнений, описывающей течение в вихревой области, может появиться особенность [18-21], аналогичная особенности в точке отрыва пограничного слоя. Однако в случае закрученного течения это происходит при $V_{x}>0$ на оси симметрии вихря. Решение параболической системы уравнений в этом случае не удается продолжить за особую точку.

Рассмотрим динамику развития вязкого вихревого течения струйного типа с $\alpha=0,2$ и "циркуляцией" окружной скорости $V_{\varphi 1 c}=V_{\text {甲le }}=0,04 \mathrm{Re}^{1 / 2}$. Краевые условия на внешней границе вязкого ядра вихря $r_{1} \rightarrow \infty$ при расчетах задавались на конечном расстоянии от оси вихря $r_{1}=r_{e}=17$, что позволяло получить численные решения задачи (1.2) вплоть до координаты $x_{1}=1-2$ без видимого влияния величины r_{e} на профили скорости, давления и энтальпии в вязкой области течения.

Фиг. 1. Распределения продольной $V_{x}(a)$ и окружной $\nu_{\varphi}(\sigma)$ составляющих скорости в вихре струйного типа. Кривая l соответствует начальному сечению $x=0$. В сечении $x=0,2$ кривые $2-4-\mathrm{dM}=0$ и $\pm 0,08$, кривые 5,6 - подводу тепла с параметрами $Q_{V 0}=10^{4} ; r_{q}=0,25 r_{e}$ и $Q_{V 0}=2 \cdot 10^{4}, r_{q}=0,1 r_{e}$

Фиг. 2. Распределения температуры (a) и давления (б) поперек ядра вихря струйного типа. Значения параметров указаны на фиг.

Для выбранного распределения начальных параметров (продольной и окружной составляющей скорости и температуры) проведены расчеты для пяти различных типов закрученных течений: безградиентного течения, двух типов градиентных течений без подвода энергии и двух типов безградиентных течений с объемным подводом тепла вблизи ядра вихря. Для градиентных течений распределения составляющей скорости V_{x}, энтальпии и давления в невязкой области (вне ядра вихря) определялись по заданному распределению числа Маха спутного потока $\mathrm{M}_{e}\left(x_{1}\right)$, которое изменялось по линейному закону $\mathrm{M}_{e}\left(x_{1}\right)=\mathrm{M}_{e 0}+\mathrm{dM}\left(x_{1}-x_{0}\right)$, где $\mathrm{M}_{e 0}=0,8, \mathrm{dM}= \pm 0,08$. При расчетах течений с подводом энергии источниковый член в уравнении энергии задавался в области подвода энергии в поток $x_{1}<x<x_{e}$ в виде

Фиг. 3. Распределения продольной $V_{x}(a)$ и окружной v_{φ} (б) составляющих скорости в ядре вихря следового типа. Кривая / соответствует начальному сечению $x=0$. В сечении $x=0,2$ кривые $2-4-\mathrm{dM}=0$ и $\pm 0,08$, кривые 5,6 - подводу тепла с параметрами $Q_{V 0}=10^{4}, r_{q}=0,25 r_{e}$ и $Q_{V 0}=10^{4}, r_{q}=0,1 r_{e}$

$$
\begin{align*}
& Q\left(x_{1}, r_{1}\right)=Q_{V 0}\left(x_{1}-x_{b}\right)\left(x_{e}-x_{1}\right) \cos \left(\frac{\pi r_{1}}{2 r_{q}}\right) \tag{2.1}\\
& x_{b} \leq x_{1} \leq x_{e}, r_{1} \leq r_{q}, x_{b}=0,1, \quad x_{e}=0,2
\end{align*}
$$

На фиг. 1 приведены распределения продольной $V_{x}\left(r_{1}\right)(a)$ и окружной $v_{\varphi}=v_{\varphi 1}=V_{\varphi 1} / r_{1}(\sigma)$ составляющих скорости для безградиентного течения, двух типов градиентных течений и двух случаев с подводом тепловой энергии вблизи ядра вихря для указанных на фигуре параметров. В сечении $x_{1}=0,2$ профили окружной составляющей скорости для безградиентного и градиентных течений с $\mathrm{dM}= \pm 0,08$ практически совпадают.

На фиг. 2 приведены соответствующие описанным выше типам течений распределения температуры (a) и давления (6) поперек ядра вихря.

Приведенные результаты показывают, что даже при $d P_{e} / d x<0$ благодаря интенсивной диссипации завихренности в начале области вязкого течения вблизи оси вихря создается значительный неблагоприятный градиент давления, что приводит к быстрому росту давления на оси вихря в направлении основного потока (фиг. $2, б$) и, как следствие этого, к интенсивному торможению вязкого течения и быстрому уменьшению V_{x} на оси вихря (фиг. 1, a).

Подвод тепловой энергии в поток вблизи оси вихря приводит к значительному увеличению неблагоприятного градиента давления в этой области даже при $d P_{c} / d x>0$, вызывая интенсивное торможение потока и быстрое уменьшение V_{x} вблизи оси вихря. В случае $d P_{e} / d x>0$ подвод тепла приводит к более резкому торможению течения вблизи оси вихря. Таким образом, объемный подвод тепла может оказывать при определенных условиях даже более сильное влияние на формирование завихренного течения и распределение скоростей поперек вихря, чем градиент давления во внешнем невязком потоке, который в обычных условиях считается одним из наиболее важных механизмов, вызывающих разрушение вихря [1-8, 18-21].

Расчеты завихренных течений типа следа с дефицитом продольной составляющей скорости были выполнены для $\alpha=-0,2$ при величине циркуляции окружной скорости в невязком потоке $V_{\varphi \mid c}=0,04 \mathrm{Re}^{1 / 2}$. На фиг. 3 приведены распределения $V_{\wedge}(a)$ и $v_{\varphi}(\sigma)$ для безградиентного потока, двух течений с заданным внешним градиентом давления и двух случаев подвода энергии в поток.

Совпадение кривых $2-4$ на фиг. 3,6 показывает слабое влияние малых градиентов давления во внешнем окружающим вихрь потоке на распределение v_{φ} поперек вязкой области. Кривые 5 и 6 иллюстрируют влияние подвода тепла вблизи оси вихря с указанными выше параметрами на окружную скорость v_{φ}.

Результаты расчетов показывают, что для течения типа следа диссипация завихренности также приводит к появлению неблагоприятного градиента давления вблизи оси вихря и интенсивному торможению потока, которое усиливается при объемном подводе энергии в поток. Благодаря наличию дефицита продольной скорости в начальном сечении начальное интенсивное торможение газа, вызванное неблагоприятным градиентом давления, приводит к относительно более быстрому уменьшению V_{x} вблизи оси, чем для течений струйного типа. Такое поведение профилей V_{x} вблизи ядра вихря может инициировать более раннее появление особенности, указывающей на возможность разрушения завихренного течения.

Действительно, уже для параметров $Q_{V 0} \geq 1,4 \cdot 10^{4}, r_{q}=0,1 r_{e}$ в области нагрева появляется особая точка, при подходе к которой численное решение системы уравнений (1.2) начинает расходиться, а ниже по течению от этой точки решение не может быть получено в рамках используемой в данной работе модели течения. Можно предполагать, что поведение завихренного течения в вязком теплопроводном газе в смысле появления особой точки в вязкой области течения аналогично поведению завихренного течения в несжимаемой жидкости, где в решении соответствующих уравнений также появляется особая точка, которая может быть отождествлена с точкой разрушения вихря [16-21].

Заключение. Подвод тепла к завихренным трехмерным течениям в спутных дозвуковых потоках, начальные прӧфили скорости которых соответствуют либо струйному, либо следовому типу с дефицитом продольной скорости может приводить к существенной перестройке течения, усиливать неблагоприятный градиент давления вдоль оси вихря, оказывать существенное влияние на распределения продольной v_{x} и окружной v_{φ} составляющих скорости. Изменение v_{φ} за счет подвода тепла вблизи оси вихря оказывается даже более значительным, чем соответствующее перераспределение v_{φ}, вызванное неблагоприятным градиентом давления во внешнем невязком потоке. Перестройка профилей окружной составляющей скорости, связанная с объемным подводом энергии, в свою очередь может приводить к дальнейшему увеличению неблагоприятного продольного градиента давления в области оси вихря и торможению потока.

При интенсивной закрутке вязкая диссипация и соответствующая перестройка профилей скорости даже при $d P_{e} / d x \leq 0$ вызывают вблизи оси вихря значительный неблагоприятный градиент давления и интенсивное торможение потока. Величина v_{x} на оси при этом оказывается на $20-60 \%$ меньше величины продольной скорости в основной части потока, что может, как показывают экспериментальные и расчетные данные [16-21], приводить к разрушению завихренного течения.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 96-01-00586).

СПИСОК ЛИТЕРАТУРЫ

1. Werle H. Visualisation en tunnel hydrodynamique // Rech. Aeronaut. 1953. № 33. P. 3-7.
2. Hall M.G. Vortex breakdown // Annual. Rev. Fluid Mech. 1972. V. 4. P. 195-218.
3. Leibovich S. Vortex stability and breakdown: survey and extension // AIAA Journal. 1984. V. 22. № 9. P. 1192-1206.
4. Escudier M. Vortex breakdown observations and explanations // Progr. Aerospace Sci. 1988. V. 25. № 2. P. 189-229.
5. Spall R.E., Gatski T.B., Ash R.L. The structure and dynamic of a bubble-type vortex breakdown // Proc. Roy. Soc. London, Ser. A. 1990. V. 429. № 1877. P.613-637.
6. Сычев Вик.В. Асимптотическая теория разрушения вихря // Изв. РАН. МЖГ. 1993. № 3. C. $78-90$.
7. Liu C., Menne S. Simulation of a three-dimensional vortex breakdown // AIAA Paper. 1989. № 1806.5 p .
8. Lessen M.R., Singh P.I., Paillet F. The stability of trailing line vortex: Pt. 1. Invicid theory // J. Fluid Mech. 1974. V. 63. Pt. 4. P. 753-763.
9. Batchelor G.K. Axial flow in trailing line vortices // J. Fluid Mech. 1964. V. 20. Pt 4. P. 645-658.
10. Гапонов С.А., Маслов А.А. Развитие возмущений в сжимаемых потоках. Новосибирск: Наука, 1980. 144 с.
11. Казаков А.В., Коган М.Н., Купарев В.А. Об устойчивости дозвукового пограничного слоя при нагреве поверхности плоской пластины вблизи передней кромки // Изв. АН СССР. МЖГ. 1985. № 3. С. 68-72.
12. Казаков А.B., Купарев В.A. О ламинаризации пограничного слоя на теплоизолированной поверхности при подводе энергии в поток // Изв. АН СССР. МЖГ. 1988. № 5. C. 58-61.
13. Казаков А.В., Коган М.Н. Устойчивость дозвукового ламинарного пограничного слоя на плоской пластине при объемном подводе энергии // Изв. АН СССР. МЖГ. 1988. № 2. С.6267.
14. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. Т. 2. М.: Мир, 1990. 726 с.
15. Menne S. Vortex breakdown in axisymmetric flow // AIAA Paper 1988. № 0506. 9 p.
16. Menne S. Simulation of Vortex Breakdown in Tubes // AIAA Paper 1988. № 3573.12 p.
17. Brown G.L., Lopez J.M. Axisymmetric vortex breakdown. Pt 2. Physical mechanisms // J. Fluid Mech. 1990. V. 22I. P. 553-576.
18. Hall M.G. A new approach to vortex breakdown // Proc. Heat Transfer and Fluid Mech. Inst. San Diego-La Jolla, Calif. 1967. Stanford, Calif.: Univ. Press, 1967. P. 319-340.
19. Reyna L.G., Menne S. Numerical prediction of flow in slender vortices // Comput. and Fluids. 1988. V. 16. № 3. P. 239-256.
20. Тригуб В.Н. К вопросу о разрушении вихревой нити // ПММ. 1985. Т. 49. Вып. 2. C. 220-226.
21. Benjamin T.B. Theory of the vortex breakdown phenomenon // J. Fluid Mech. 1962. V. 14. Pt 4. Р. 593-629.
