© 1995 r. С. Н. АРИСТОВ, В. И. ГРАБОВСКИЙ

АВТОМОДЕЛЬНОЕ РЕШЕНИЕ УРАВНЕНИЙ НАВЬЕ - СТОКСА ДЛЯ ТЕЧЕНИЙ ГАЗА ВО ВРАЩАЮЩИХСЯ ЛОГАРИФМИЧЕСКИ-СПИРАЛЬНЫХ ПЛОСКИХ КАНАЛАХ

Найдено и исследовано автомодельное решение системь уравнений Навье - Стокса для течений газа при постоянных козффициентах переноса применительно к вращающимся логарифмическиспиральным плоским каналам. Решение и его существование зависят от безразмерных критериев: числа Re ; параметра M_{Ω}, характеризующего вращение канала; параметров автомодельности а и β, отвечающих за форму канала; направления вращения канала; отншения температур стенок. С помоиью численного решения системы обыкновенных дифференциальных уравнений второго порядка исследованы области изменения определяющих параметров, где существуют автомодельные решения для течения газа в канале при его вращении.

Расчет течения газа в криволинейном плоском канале при его вращении важен для прогнозирования характеристик ступеней центробежных насосов и других аналогичных устройств. При этом учет вязких эффектов во многих случаях является необходимым, например, при возникновении зон отрыва. Имеется много работ по использованию уравнений Навье - Стокса для численного расчета характеристик ступеней турбомашин, например [1, 2]. Отметим работы [3, 4], где численный расчет течений несжимаемой вязкой жидкости во вращающихся рабочих колесах центробежных насосов проводился для каналов также логарифмически-спиральной формы. Однако такие расчеты даже течений несжимаемых жидкостей очень трудоемки и требуют больших затрат времени. Поэтому часто оказывается полезным для исследования особенностей течений газа в устройствах использовать упрощенные решения, в частности автомодельные. Хорошо известные решения для чисто радиальных течений жидкости (Джеффри, Гамель) и для некоторых типов пристеночных течений приведены, например, в [5, 6]. В работе [7] приведен обзор более поздних работ по частным видам автомодельных решений уравнений Навье - Стокса, а также получен общий вид таких решений для течений газа в логарифмически-спиральных каналах. Однако автомодельные решения для вязких течений сжимаемого газа во вращающихся каналах авторам не известны. Этому вопросу посвящено исследование данной работы.

1. Используя вращающуюся цилиндрическую систему координат (r, θ, z) и обозначения для компонент относительной скорости газа $v_{r} \equiv v, v_{\theta} \equiv u, v_{z} \equiv w$, для стационарного случая при постоянных коэффициентах вязкости μ, теплопроводности λ и теплоемкости c_{p} запишем систему уравнений Навье - Стокса для газа с учетом вращения в безразмерном виде, полагая независимость всех переменных от координаты z :

$$
\begin{align*}
& \frac{\partial \rho u}{r \partial \theta}+\frac{\partial r \rho v}{r \partial r}=0, \quad p=\rho T \\
& \frac{\partial \rho u^{2}}{r \partial \theta}+\frac{\partial r \rho v u}{r \partial r}+\frac{\rho u v}{r}+2 \Omega \rho v+\frac{\partial p}{\gamma M_{\Omega}^{2} r \partial \theta}=\frac{1}{\operatorname{Re}}\left(\Delta u+\frac{1}{3} \frac{\partial \operatorname{div} \mathbf{v}}{r \partial \theta}-\frac{u}{r^{2}}+\frac{2 \partial v}{r^{2} \partial \theta}\right) \\
& \frac{\partial \rho u v}{r \partial \theta}+\frac{\partial r \rho v^{2}}{r \partial r}-\frac{\rho u^{2}}{r}-\rho \Omega(r \Omega+2 u)+\frac{\partial p}{\gamma M_{\Omega}^{2} \partial r}=\frac{1}{\operatorname{Re}}\left(\Delta v+\frac{1}{3} \frac{\partial \operatorname{div} \mathbf{v}}{\partial r}-\frac{v}{r^{2}}-\frac{2 \partial u}{r^{2} \partial \theta}\right) \tag{1.1}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial \rho u w}{r \partial \theta}+\frac{\partial \rho v w}{r \partial r}=\frac{\Delta w}{\operatorname{Re}} \\
& \frac{\partial \rho u T}{r \partial \theta}+\frac{\partial r \rho v T}{r \partial r}=\frac{\Delta T}{\operatorname{Pe}}-(\gamma-1) p \operatorname{div} v+\gamma \frac{\mathrm{Ec}}{\operatorname{Re}} \Phi_{\mu} \\
& \Phi_{\mu}=-\frac{2}{3}(\operatorname{div} v)^{2}+2\left\{\left(\frac{\partial v}{\partial r}\right)^{2}+\left(\frac{\partial u}{r \partial \theta}+\frac{v}{r}\right)^{2}\right\}+\left\{\frac{r \partial(u / r)}{\partial r}+\frac{\partial v}{r \partial \theta}\right\}^{2}+ \\
& +\left(\frac{\partial w}{r \partial \theta}\right)^{2}+\left(\frac{\partial w}{\partial r}\right)^{2} \\
& \operatorname{Re}=\frac{\Omega_{*} r_{*}^{2} p_{*}}{\mu R T_{*}}, \quad M_{\Omega}=\frac{\Omega_{*} r_{*}}{\left(\gamma R T_{*}\right)^{1 / 2}}, \quad \operatorname{Pr}=\frac{\mu c_{p}}{\lambda}, \quad \gamma=\frac{c_{p}}{c_{v}} \\
& \mathrm{Ec}=M_{\Omega}^{2}(\gamma-1), \quad \operatorname{Pe}=\frac{\operatorname{Re} \operatorname{Pr}}{\gamma}=\frac{c_{v} \Omega_{*} r_{*}^{2} p_{*}}{\lambda R T_{*}}
\end{aligned}
$$

Здесь безразмерные параметры: Ω - постоянная угловая скорость вращения канала, Re - число Рейнольдса, M_{Ω} - параметр, характеризующий скорость вращения канала, Pe - число Пекле, Pr - число Прандтля, Ес - число Эккерта. Соотношения между размерными переменными (со знаком ${ }^{\circ}$), характерными величинами (со звездочкой) и безразмерными переменными следующие:

$$
\begin{aligned}
& r^{\circ}=r_{*} r, \quad \Omega^{\circ}=\Omega_{*} \Omega, \quad \mathbf{v}^{\circ}=\Omega_{*} r_{*} \mathbf{v}, \quad p^{\circ}=p_{*} p \\
& \rho^{\circ}=\rho_{*} \rho, \quad T^{\circ}=T_{*} T, \quad \rho_{*}=\frac{p_{*}}{R T_{*}}
\end{aligned}
$$

Аналогично работе [7] представим физическое решение в виде:

$$
\begin{align*}
& u=u_{A}(\xi) r, \quad v=v_{A}(\xi) r, \quad w=w_{A}(\xi) r, \quad p=p_{A}(\xi) \\
& \rho=p_{A}(\xi) r^{-2}, \quad T=T_{A}(\xi) r^{2}, \quad \xi=\alpha \theta+\beta \ln r \tag{1.2}
\end{align*}
$$

Здесь автомодельное решение отмечено индексом A. Автомодельная переменная ξ связана с θ и r параметрами автомодельности α и β, которые можно варьировать. На фиг. 1 в плоскости x, y показаны стенки канала (границы течения) при $\alpha=3$ и $\beta=1$ соответственно условию $\xi \eta=$ const $(r=\exp ((\xi-\alpha \theta) / \beta)$ - логарифмическая спираль). Пусть решение соответствует $\xi=[0 ; 1]$, тогда имеем $\alpha=1 / \theta_{1}>0$, т. е. α определяет количество каналов $n=2 \pi \alpha$ по всей вращающейся окружности. Параметр β вместе с α определяют наклон и кривизну стенок канала

$$
\left.\frac{\partial r}{\partial \theta}\right|_{\xi=\text { const }}=-\frac{\alpha r}{\beta},\left.\quad \frac{\partial^{2} r}{\partial \theta^{2}}\right|_{\xi=\text { const }}=r\left(\frac{\alpha}{\beta}\right)^{2}>0
$$

Отметим, что полученная форма каналов как частный случай может соответствовать реальным устройствам (см., например, [3, 4]). В переменных (r, θ) канал является расширяющимся, так как при $r=$ const имеем $\alpha \Delta \theta=\Delta \xi$ и, следовательно, в декартовой системе координат $D=r \Delta \xi / \alpha \rightarrow \infty$ при $r \rightarrow \infty$.

Граничные условия для физических переменных на стенках канала, форма которых выбирается согласно автомодельному решению, запишутся в виде:

$$
\begin{array}{ll}
r=f_{0}(\theta): & v=u=w=0, \\
r=f_{1}(\theta): & v=f_{T}(r), \quad p=1 \tag{1.3}\\
r=w=0, & T=T_{1} f_{T}(r)
\end{array}
$$

Подставляя соотношения (1.2) в систему уравнений (1.1), получим систему обыкновенных дифференциальных уравнений относительно автомодельных переменных $u_{A}, v_{A}, w_{A}, p_{A}, p_{A}, T_{A}$ (в дальнейшем везде нижний индекс A опускается, а штрих обозначает дифференцирование по переменной ξ)

$$
\begin{align*}
& \Pi^{\prime}=0, \quad \Pi=\rho(\alpha u+\beta v), \quad p=\rho T \\
& u^{\prime \prime} \frac{4 \alpha^{2}+3 \beta^{2}}{3 \operatorname{Re}}+v^{\prime \prime} \frac{\alpha \beta}{3 \operatorname{Re}}+u^{\prime}\left(\frac{2 \beta}{\operatorname{Re}}-\Pi\right)+v^{\prime} \frac{8 \alpha}{3 \operatorname{Re}}-\frac{\alpha}{\gamma M_{\Omega}^{2}} p^{\prime}-2 \rho v(u+\Omega)=0 \\
& u^{\prime \prime} \frac{\alpha \beta}{3 \operatorname{Re}+v^{\prime \prime} \frac{3 \alpha^{2}+4 \beta^{2}}{3 \operatorname{Re}}-u^{\prime} \frac{2 \alpha}{\operatorname{Re}}+v^{\prime}\left(\frac{8 \beta}{3 \operatorname{Re}}-\Pi\right)-\frac{\beta}{\gamma M_{\Omega}^{2}} p^{\prime}+} \tag{1.5}\\
& +\rho\left[(u+\Omega)^{2}-v^{2}\right]=0 \tag{1.6}\\
& w^{\prime \prime} \frac{\alpha^{2}+\beta^{2}}{\operatorname{Re}}+w^{\prime}\left(\frac{2 \beta}{\operatorname{Re}}-\Pi\right)+w\left(\frac{1}{\operatorname{Re}}-\rho v\right)=0 \tag{1,7}\\
& T^{\prime \prime} \frac{\alpha^{2}+\beta^{2}}{\operatorname{Pe}}+T^{\prime}\left(\frac{4 \beta}{P e}-\Pi\right)+T\left(\frac{4}{\operatorname{Pe}}-2 \rho v\right)-(\gamma-1) p\left(\alpha u^{\prime}+\beta v^{\prime}+2 v\right)+ \\
& +\frac{\gamma \mathrm{Ec}}{\operatorname{Re}} F_{\mu}=0 \tag{1.8}\\
& F_{\mu}=-\frac{2}{3}\left(\alpha u^{\prime}+\beta v^{\prime}+2 v\right)^{2}+2\left(\beta v^{\prime}+v\right)+2\left(\alpha u^{\prime}+v\right)^{2}+ \\
& +\left(\alpha v^{\prime}+\beta u^{\prime}\right)^{2}+\left(\alpha w^{\prime}\right)^{2}+\left(\beta w^{\prime}+w\right)^{2}
\end{align*}
$$

Система уравнений (1.4) - (1.8) имеет два интеграла, вытекающих из первого в (1.4) уравнения и из уравнения (1.7) с учетом граничных условий (1.3)

$$
\begin{equation*}
u \equiv-v \beta / \alpha, \quad w \equiv 0 \tag{1.9}
\end{equation*}
$$

Для дальнейшего удобно представить систему (1.4) - (1.8) в более компактном виде $(\Pi \equiv 0, w=0)$

$$
\begin{align*}
& u^{\prime \prime}=\operatorname{Re} \frac{\left(3 \alpha^{2}+4 \beta^{2}\right) F_{u}-\alpha \beta F_{v}}{4\left(\alpha^{2}+\beta^{2}\right)^{2}} \tag{1.10}\\
& v^{\prime \prime}=\operatorname{Re} \frac{\left(4 \alpha^{2}+3 \beta^{2}\right) F_{v}-\alpha \beta F_{u}}{4\left(\alpha^{2}+\beta^{2}\right)^{2}} \tag{1.11}\\
& T^{\prime \prime}=\operatorname{Pe} F_{T} /\left(\alpha^{2}+\beta^{2}\right) \tag{1.12}\\
& F_{u}=u^{\prime}\left(-\frac{2 \beta}{\operatorname{Re}}\right)-\frac{8 \alpha v^{\prime}}{3 \operatorname{Re}}+2 p v(u+\Omega)+\alpha p^{\prime} /\left(\gamma M_{\Omega}^{2}\right) \\
& F_{v}=v^{\prime}\left(-\frac{8 \beta}{3 \operatorname{Re}}\right)+\frac{2 \alpha u^{\prime}}{\operatorname{Re}}+p\left[v^{2}-(u+\Omega)^{2}\right]+\beta p^{\prime} /\left(\gamma M_{\Omega}^{2}\right) \\
& F_{T}=T^{\prime}\left(-\frac{4 \beta}{\operatorname{Pe}}\right)-T\left(\frac{4}{\operatorname{Pe}}-2 p v\right)+(\gamma-1) p\left(\alpha u^{\prime}+\beta v^{\prime}+2 v\right)-\frac{\gamma \mathrm{Ec}}{\operatorname{Re}} F_{\mu}
\end{align*}
$$

Подставляя интегралы (1.9) в уравнения (1.10) - (1.12) и требуя совместности . при этом уравнений (1.10) и (1.11), получим соотношение для расчета давления p

$$
\begin{equation*}
\alpha F_{u}^{\circ}+\beta F_{v}^{\circ}=0 \tag{1.13}
\end{equation*}
$$

где знак градус означает, что проведена подстановка интегралов (1.9).
Произведя необходимые выкладки, получим окончательную систему уравнений, включающую в себя как дифференциальные уравнения, так и алгебраические соотношения относительно автомодельных переменных

$$
\begin{align*}
& p^{\prime}=\frac{1}{\gamma M_{\Omega}^{2}}\left\{\frac{8 v^{\prime}}{3 \operatorname{Re}}+\frac{\rho}{\alpha^{2}}\left[\beta \frac{\alpha^{2} \Omega^{2}}{\alpha^{2}+\beta^{2}}-2 \alpha \Omega v\left(\alpha^{2}+\beta^{2}\right)+\beta v^{2}\right]\right\} \tag{1.14}\\
& \left(\alpha^{2}+\beta^{2}\right) v^{\prime \prime}+2 \beta v^{\prime}+\operatorname{Re} \rho\left(\frac{\alpha^{2} \Omega^{2}}{\alpha^{2}+\beta^{2}}-v^{2}\right)=0 \tag{1.15}\\
& \left(\alpha^{2}+\beta^{2}\right) T^{\prime \prime}+4 \beta T^{\prime}+2(2-\operatorname{Pe} \rho v) T-\operatorname{Pe}\left[(\gamma-1) p v-\gamma E c F_{\mu}{ }^{\circ} / \operatorname{Re}\right] \tag{1.16}\\
& u=-v \beta / \alpha, \quad \rho=p / T \tag{1.17}
\end{align*}
$$

2. Система уравнений (1.14) - (1.16) интегрировалась численно итерационным методом с использованием прогонки для отдельных уравнений с вытекающими из (1.3) граничными условиями

$$
\begin{array}{ll}
\xi=0, & v=0, \quad T=1, \quad p=1 \\
\xi=1, \quad v=0, \quad T=T_{1} \\
G=\int_{0}^{1} \frac{\rho v \mathrm{~d} \xi}{\alpha}=\text { const } \quad\left(G_{*}=p_{*} \Omega_{*} r_{*}^{2}\right) \tag{2.2}
\end{array}
$$

В случае «прямой» задачи значение $p(0)$ или $p(1)$ подбирается таким, чтобы получалось заданное значение G. Для «обратной» задачи можно задавать $p(0)$ (или $p(1)$), получая при этом из решения значение G.

Не решая задачи, из вида автомодельного решения можно указать некоторые особенности получаемого течения. Вдоль линий тока, включая стенки канала, сохраняются статическое (p°) и полное ($p_{t}{ }^{\circ}$) давление, импульс (π°) и число Маха М (величины со знаком градус - физические размерные переменные)

$$
\begin{aligned}
& p^{\circ}=p_{*} p(\xi), \quad p_{t}^{0}=p_{*} p(\xi)\left[1+(\gamma-1) / 2 \mathrm{M}^{2}(\xi) \mathrm{f}^{\prime(\gamma-1)}\right. \\
& \pi^{\circ}=\left(p_{*} R T_{*} \Omega_{*}^{2} r_{*}^{2}\right) \rho v_{n} \mathrm{v}=\pi^{\circ}(\xi) \\
& M^{2}=\left(u^{02}+v^{02}\right) /\left(\gamma R T^{0}\right)=\mathrm{M}_{\Omega}^{2}\left(u^{2}+v^{2}\right) /(\gamma R T)=\mathrm{M}^{2}(\xi)
\end{aligned}
$$

и соответственно их средние по сечению канала значения. Но возрастают при $r^{\circ} \rightarrow \infty$ вдоль линий тока и в среднем по сечению: статическая T° температура, температура торможения T_{t}° и энтальпия I -

$$
T^{\circ}=T_{*} r^{\circ} T(\xi), \quad T_{t}^{\circ}=T_{*} r^{\circ} T(\xi)\left[1+(\gamma-1) / 2 M^{2}(\xi)\right], \quad \Gamma^{\circ}=c_{p} T_{t}^{\circ}(\xi)
$$

Отсюда следуют важные выводы о реализации полученных решений и их соответствии реальным устройствам. Так, необходимым условием такого течения является нагрев газа через стенки канала, что, как известно, в канале постоянного сечения вызывает ускорение дозвукового потока из-за соответствующего уменьшения плотности газа [8]. Но, как было указано выше, искомый канал является расширяющимся, что в свою очередь ведет к замедлению дозвукового потока согласно закону обратимых воздействий [8]. Поэтому в случае дозвукового режима течения должно быть превалирование эффекта нагрева газа для обеспечения возрастания скорости епо движения от 0 до ∞ вдоль канала при $r^{\circ} \rightarrow \infty$. При сверхзвуковом режиме течения, наоборот, эффект увеличения сечения должен превалировать над эффектом нагрева газа, который в этом случае замедляет поток. Температура стенок может быть различной, но обязана быть возрастающей по одинаковому закону для каждой из стенок с ростом r°.

С точки зрения конкретных приложений условие постоянства вдоль канала физических статического и полного давления, импульса и числа Маха налагает существенное ограничение на использование решения на практике, в частности для межлопаточных каналов турбомашин.
3. Представим теперь результаты численного решения системы уравнений (1.14) - (1.17) для автомодельных переменных при граничных условиях (2.1) для следующих значений определяющих параметров:

$$
\Omega= \pm 1, \quad M_{\Omega}>0, \quad \operatorname{Re}>0, \quad \operatorname{Pr}=1, \quad \gamma=1,4, \quad T_{1}=1, \quad \alpha>0, \quad \beta>0
$$

Численное исследование этой системы уравнений показало, что на существование решения влияют все параметры: $M_{\Omega}, \operatorname{Re}, T_{1}, \Omega, \alpha, \beta$, а также, что интересно, на какой из стенок канала фиксируется величина давления (или плотности) (см. граничные условия (1.3) и (2.1)).

При $\Omega=0$ и $\beta \neq 0$ имеется только тривиальное нулевое решение. При $\Omega \neq 0$ решение имеется и является решением типа источника с физическими бесконечной плотностью и нулевой скоростью при $r=0$. Температура газа в канале не является постоянной, несмотря на одинаковость ее значений на разных стенках. Из вида автомодельного решения (1.2) следует, что поток при $r \rightarrow \infty$

Фиг. 4

Фиг. 5

ускоряется, при этом физическая температура стенок и потока должна возрастать, например из-за внешнего подвода тепла.

При $\Omega \neq 0$ и $\beta=0$ (прямолинейные радиальные стенки) ненулевого решения для течения газа не имеется.

На фиг. 2 в плоскости ($\mathrm{M}_{\Omega}, \mathrm{Re}$) показаны области существования автомодельного решения при $\alpha=3, p(0)=p_{0}=$ const, разных значениях $\beta=3 ; 6$ и направлениях вращения канала $\Omega= \pm 1$. Сплошные линии соответствуют $\Omega=1$, а штриховые $\Omega=-1$. Ниже каждой кривой решение имеется. При $\mathrm{M}_{\Omega}, \operatorname{Re} \rightarrow \infty$ решения нет. Предполагается, что это связано либо с появлением зон обратного течения на стенках при $\operatorname{Re} \rightarrow \infty$, либо с достижением критического режима течения $M=1$ при $M_{\Omega} \rightarrow \infty$. При бо́льших β (бо́льшем загибе потока) решение имеется в боле́е пироком диапазоне изменения параметров. При данном задании граничного условия для p, т. е. на выпуклой стенке канала, вращение против загиба канала ($\Omega>0$) расширяет область существования решения. Это можно объяснить тем, что при таком вращении отрыв потока скорее возникает на выпуклой стенке и фиксирование на ней величины давления ведет к затягиванию отрыва потока.

На фиг. 3 приведены интегральные параметры соответственно фиг. 2: расход G и полное давление p_{t} - обе величины в логарифмическом масштабе - в зоне существования решения при разных значениях параметров. Сплошные линии соответствуют $\Omega=1$, а штриховые $\Omega=-1$. Линиям $1-3$ соответствуют нары значенич $(\operatorname{Re}=100, \beta=3) ;(100,6) ;(300,6)$. Большие расход и полное давление реализуктся при увеличении Re, уменьшении β, при отрицательном вращении канала $\Omega=-1$ и с ростом M_{Ω}. Согласно фиг. 2 , все указанные факторы соответствуют параметрам вблизи границы области существования решения. На фиг. 4 приведены результаты расчетов для тех же режимов, что и на фиг. 2 ($\Omega=1$ - сплошные линии, $\Omega=-1$ - штриховые), но с переносом граничного условия для p на вогнутую стенку ($\xi=1$), что качественно изменяет результаты. Так, более широкая область параметров соответствует режимам с $\Omega=-1$ в

противоположность рассмотренному ранее случаю. Это указывает на то, что при вращении с $\Omega<0$ для канала с $\beta>0$ наиболее ответственна вогнутая стенка. В этом случае области существования решений ограничены бо́льшими значениями числа Re и ме́ньшими значениями параметра M_{Ω}. Как и в рассмотренном выше случае, бо́льший расход можно обеспечить увеличением Re и уменьшением β, но с уменьшением $\mathrm{M}_{\mathrm{\Omega}}$ и положительным вращением $\Omega>0$. Это также соответствует параметрам вблизи границы области существования решения.

Представим теперь распределение локальных характеристик течения в канале. На фиг. 5 для $\alpha=3, \beta=3, \mathrm{M}_{\Omega}=2, \operatorname{Re}=100, \Omega= \pm 1$ показаны зависимости $p(\xi), v(\xi), M(\xi)$ (граничное условие для p фиксируется при $\xi=1$). Сплошные линии соответствуют $\Omega=1$, а штриховые $\Omega=-1$. Отметим, что давление всегда больше на вогнутой стенке, что нужно для поворота потока в канале. Градиент давления поперек канала уменьшается при изменении Ω от -1 до 1 , что в конечном итоге приводит к невозможности построения решения задачи (см. фиг. 4). Напомним, что компонента скорости поперек канала $u(\xi)=-v \beta / \alpha$ и отрицательна. В средней точке сечения скорость течения может быть сверхзвуковой и это превышение скорости звука с ростом Re и $\mathrm{M}_{\mathfrak{\Omega}}$ может возрастать до достижения ситуации, когда рассматриваемое решение построить невозможно.

В заключение отметим, что аналогичные выводы были получены при $\beta<0$ и $T_{1} \neq 1$.

СПИСОК ЛИТЕРАТУРЫ

1. Шенг Дж. С. Обзор численных методов решения уравнений Навье - Стокса для течений сжимаемого газа//Аэрокосмическая техника. 1986. № 2. С. 65-92.
2. Иванов М. Я., Крупа В. Г., Нигматуллин Р. З. Неявная схема С. К. Годунова повышенной точности для интегрирования уравнений Навье - Стокса//Журн. вычисл. математики и мат. физики. 1989. Т. 29. № 6. С. 888-901.
3. Lee S. C., Chen D. Off-design performance prediction for radial-flow impellers//Paper ASME. 1988. № 88-GT67. 7 p.
4. Bosman C., Chan K. C., Hatton A. P. A calculation method of incompressible viscous, blade-to-blade flow through radial turbomashines with log-spiral blade surfaces//Trans. ASME. J. Engng Power. 1979. V. 101. № 3. P. 450-458.
5. Седоя Л. И. Методы подобия и размерности в механике. М.: Наука, 1987. 432 с.
6. Бэтчелор. Дж. Введение в динамику жидкости. М.: Мир, 1973. 758 с.
7. Аристов С. Н. Класс точных решений уравнений Навье - Стокса для сжимаемого вязкого газа//Докл. АН СССР. 1990. Т. 313. № 6. С. 1403-1406.
8. Абрамовии Г. Н. Прикладная газовая динамика. Ч. 1. М.: Наука, 1991. 597 с.
