(c) 1995 г. Е. С. ЛOCEB, Н. В. HETPEBKO

## МОДЕЛИРОВАНИЕ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ В НЕСТАЦИОНАРНЫХ СДВИГОВू̆Х ТЕЧЕНИЯХ

На основе реологической модели крови, учитывающей как тиксотропные, связанные с агрегационной способностью эритроцитов, так и вязкоупругие свойства, рассматриваются вопросы моделирования ее течения при невысоких скоростях сдвига в нестационарньх условиях. Полученные зависимости сдвигового напряжения от времени при одноразовых прямоугольньх изменениях скорости сдвига и зависимости компонент комплексной вязкости от амплитуды колебаний скорости сдвига при осциллирующем течении демонстрируют хорошее качественное соответствие известньм из литературы эхспериментальным данным.

1. Большинство висқозиметрических экспериментов с кровью проведено в стационарных условиях. Результаты этих экспериментов, как правило, трактуются в рамках модели нелинейно-вязкой жидкости с реологическим соотношением

$$
\begin{equation*}
\tau_{i j}=2 \mu(I) e_{i j}, \quad I=\sqrt{2 e_{i} e_{i j}} \tag{1.1}
\end{equation*}
$$

где $\tau_{l j} e_{l j}$ - компоненты тензоров напряжений и скоростей деформаций, $I$ - второй инвариант тензора скоростей деформаций, и для простых сдвиговых течений представляются в величинах «напряжение - скорость сдвига» или «эффективная (кажущаяся) вязкость - скорость сдвига»

$$
\begin{equation*}
\tau=\tau(I), \quad \mu_{e}=\mu_{e}(I) \tag{1.2}
\end{equation*}
$$

Характерной особенностью крови, влияющей на ее реологическое поведение при невысоких скоростях сдвига, является способность эритроцитов образовывать агрегаты [3]. В связи с этим применение зависимостей типа (1.2) к нестационарным режимам течения крови возможно лишь в ситуации, когда изменения агрегационной структуры мгновенно следуют за изменением скорости сдвига, что заведомо непригодно для процессов с характерным временем, меньшим или порядка 1 с. Кроме того, в нестационарных течениях при низких скоростях сдвига проявляется эффективная вязкоупругость крови [9-11, 13-15], возникающая преимущественно за счет упругости эритроцитарных агрегатов. Указанные особенности могут быть учтены, если вместо (1.1) записать простейшее уравнение вязкоупрупости (ради простоты нелинейными членами в относительных производных по времени будем пренебрегать)

$$
\begin{equation*}
\lambda_{1} \frac{d \tau_{i j}}{d t}+\tau_{i j}=2 \mu\left(e_{i j}+\lambda_{2} \frac{d e_{i j}}{d t}\right) \tag{1.3}
\end{equation*}
$$

и использовать модель крови как модель тиксотропной жидкости с учетом кинетики агрегации [3-7]. Эта модель включает предположение о зависимостях коэффициентов в (1.3) от числовой концентрации агрегатов $N$ и уравнение кинетики агрегации

$$
\begin{align*}
& \mu=\mu(N), \quad \lambda_{1,2}=\lambda_{1,2}(N)  \tag{1.4}\\
& \frac{d N}{d t}=\Gamma^{+}(N, I)-\Gamma^{-} .(N, I) \tag{1.5}
\end{align*}
$$

Здесь $\Gamma^{+}, \Gamma^{-}>0$ - скорости распада и слипания агрегатов. При этом допускается, что зависимость (1.4) в отличие от (1.2) справедлива для любых, в том числе нестационарных, процессов.

Очевидно, что в стационарном случае ( $d N / d t=0$ ) уравнение (1.5) однозначно связывает значения $N$ и $I$, поэтому поведение тиксотропной жидкости свбдится к нелинейной вязкости, а подстановка зависимости $N=N(I)$ в (1.3), (1.4) приводит (в одномерной постановке) к соотношениям (1.2). Используем это соображение для того, чтобы из экспериментально определенного в стационарных условиях соотношения (1.2) и стационарного решения уравнения (1.5) восстановить зависимость (1.4), которая практически не поддается непосредственному экспериментальному определению.

К настоящему времени предложено множество почти эквивалентных эмпирических зависимостей типа (1.1) [2,3]. Воспользуемся одной из них - формулой Кессона

$$
\begin{equation*}
\sqrt{\tau}=\sqrt{\tau_{0}}+k \sqrt{I} \tag{1.6}
\end{equation*}
$$

где $\tau_{0}$ - предельное напряжение сдвига и $k$ - коэффициент, характеризующий вязкость. С учетом инвариантного обобщения (1.6) [3] выражение для эффективной вязкости можно представить в виде

$$
\begin{equation*}
\mu_{e}=\mu_{\infty}\left(1+\frac{a}{\sqrt{I}}\right)^{2}, \quad a=\sqrt{\tau_{0}}, \quad \mu_{\infty}=k^{2} \tag{1.7}
\end{equation*}
$$

где $\mu_{\infty}$ - вязкость при больших скоростях сдвига, когда кровь полностью дезагрегирована.

Уравнение (1.5) для сдвиповых течений будем использовать в следующем виде [3-5]:

$$
\begin{equation*}
\frac{d Z}{d t}=-\alpha_{1} I Z+\alpha_{2} I(1-Z) Z^{1-n}\left(\frac{\tau}{\sigma}\right)^{m}, \quad Z=\frac{N}{N_{*}} \tag{1.8}
\end{equation*}
$$

где $Z$ - безразмерная числовая концентрация агрегатов; $N_{*}$ - максимальное значение $N$; $\sigma$ - характерное напряжение, приводящее к разрушению агрегатов; $m, n$ - эмпирические константы; $\alpha_{1}, \alpha_{2}$ - коэффициенты, характеризующие интенсивности соответственно слипания и распада агрегатов в сдвиговом течении. В стационарном случае подстановка выражения для скорости сдвига как функции концентрации из уравнения (1.8) в выражение (1.7) с учетом (1.3) дает

$$
\begin{equation*}
\mu=\frac{\mu_{\infty}}{(1-a \sqrt{B})}, \quad B=\beta Z^{n / m}(1-Z)^{1 / m}, \quad \beta=\frac{\mu_{\infty}}{\sigma}\left(\frac{\alpha_{2}}{\alpha_{1}}\right)^{1 / m} \tag{1.9}
\end{equation*}
$$

Согласно исходному допущению, принятому при формулировке модели (1.4), $(1,5)$, соотношение (1.9) в отличие от (1.7) справедливо и для нестационарных сдвиговых течений. Кроме того, (1.9) имеет более универсальный характер по отношению к агрегационной способности эритроцитов: для стационарных течений охватывает целый класс зависимостей типа (1.2) или (1.7) при различных значениях параметров $\sigma, \alpha_{1}, \alpha_{2}$, отражающих агрегационные свойства. Область изменения $Z$ в (1.9) ограничена снизу значением $Z_{\text {min }}$, которое при $Z_{\text {min }} \ll 1$ определяется формулой $Z_{\text {min }}=\left(\beta a^{2}\right)^{-m / n}$. Учитывая результаты [1], положим в (1.3)

$$
\begin{equation*}
\lambda_{1}=\frac{\mu}{E}, \quad \lambda_{2}=\xi \lambda_{1} \quad(0 \leq \xi \leq 1) \tag{1.10}
\end{equation*}
$$

где $E$ - модуль сдвиговой упругости. С физической точки зрения модуль $E$ связан в первую очередь с упругостью эритроцитарных агрегатов как единой конструкции и потому существенно зависит как от объемной, так и числовой


Фиг. 1


Фиг. 2

концентрации эритроцитов. Полагая, что модуль упругости при полной дезагрегации ( $Z=1$ ), связанный с упругостью отдельных частиц, существенно превосходит модуль упругости при максимальной агрегации ( $Z \rightarrow 0$ ), примем простейшее выражение

$$
\begin{equation*}
E=E_{0}\left(1+q Z^{p}\right) \tag{1.11}
\end{equation*}
$$

где $q, p$ - числовые коэффициенты, $q \gg 1$. Для однородного сдвигового течения уравнение (1.3) можно записать в виде

$$
\begin{equation*}
\lambda_{1} \frac{d \tau}{d t}+\tau=\mu\left(I+\lambda_{2} \frac{d I}{d t}\right) \tag{1.12}
\end{equation*}
$$

2. Рассмотрим реологическое поведение крови при ступенчатом изменении скојости сдвига, основываясь на уравнениях (1.8), (1.12) с учетом соотношений (1.\%), (1.9)-(1.11). Будем предполагать, что к моменту времени ( $t=0$ ), в который происходит скачкообразное изменение скорости сдвига от нуля до заданного значения $I_{m}$, кровь находится в состоянии покоя достаточно длительное время. Далее скорость сдвига поддерживается постоянной в течение промежутка времени $t_{0}$ с последующим скачкообразным падением до нуля. Начальные условия

$$
\begin{equation*}
\tau(0)=0, \quad Z(0)=Z_{0}, \quad Z_{\text {min }}<Z_{0}<1 \tag{2.1}
\end{equation*}
$$

Значение $Z_{0}$ связано с агрегационными свойствами конкретного образца крови. Варьирование параметров, входящих в указанную систему уравнений, позволяет получить заметное разнообразие в поведении кривых зависимости сдвигового напряжения от времени при различных скоростях сдвига, в том числе получить хорошее качественное и разумное количественное соответствие экспериментальным данным. В частности, результаты численных расчетов, проведенные на фиг. 1, соответствуют данным [12] и получены при следующих значениях параметров:

$$
\begin{array}{ll}
n=0,6 ; & m=1 ; \quad p=1 ; \quad q=200 ; \quad \mu_{\infty} / E_{0}=0,1 \mathrm{c} \\
\alpha=0,4 ; & \beta=20 \mathrm{c} ; \quad Z_{0}=1,9 \cdot 10^{-3}
\end{array}
$$

Кривые $1-3$ соответствуют значениям $I_{m}=0,05 ; 1,0 ; 20 \mathrm{c}^{-1}$. Отметим, что при стремлении $Z_{0}$ к предельному значению $Z_{\text {min }}$ кривые решения рассматриваемой задачи стремятся к конечному предельному виду. Для значений параметров (2.2)
$Z_{\text {min }}=8,818 \cdot 10^{-4}$ и вид кривых остается практически неизменным при изменении $Z_{0}$ в диапазоне $2 \cdot 10^{-3}>Z_{0}>Z_{\text {min }}$. При варьировании $Z_{0}$ в более широких пределах зависимость сдвиюового направления от времени может существенно изменяться в количественном и качественном отношении. Выбор конкретного значения $Z_{0}$ для сравнения теоретических расчетов с экспериментальными данными осложняется тем, что в отсутствие сдвига характерное время формирования стационарной структуры может быть весьма большим (во всяком случае сопоставимым с характерным временем оседания), в связи с чем в экспериментах, по-видимому, не удается достичь стационарных значений $Z_{0} \mathbf{к}$ моменту скачкообразного изменения скорости сдвига и $Z_{0}$ зависит от времени первоначальной выдержки образца крови в состоянии покоя.
3. Рассмотрим некоторые вопросы интерпретации колебательного режима для однородного сдвигового теч̣ения крови. Пусть скорость сдвига задается в виде $I(t)=I_{A} \sin \omega t$.

Рассмотрим наиболее интересный случай $t_{d} \omega \gg 1$. Поскольку при этом размер агрегатов не успевает существенно измениться в течение периода колебаний, естественно представить решение уравнения (1.8) в виде $Z(t)=\langle Z(t)\rangle+Z^{\prime}(t)$, где $\left\langle\cdots\right.$ ) означает осреднение по периоду времени $t_{*}$, намного превосходящему $(1 / \omega), Z^{\prime}(t)$ - быстро меняющаяся во времени составляющая $Z(t)$, причем

$$
\frac{1}{t_{*}} \int_{t}^{t+t_{*}} Z^{\prime}(\tau) d \tau \rightarrow 0 \quad\left(t_{*} \omega \rightarrow \infty\right)
$$

Предположим, что значения $I_{A}$ не слишком велики, так что можно считать $Z^{\prime}(t) \ll Z_{s}$, где $Z_{s}=$ const - стационарное значение $\langle Z(t)\rangle$. Тогда при установившемся (в том смысле, что $\langle Z(t)\rangle=Z_{s}$ ) колебательном режиме для коэффициентов вязкости и упругости, входящих в систему (1.3), (1.8) и представленных в виде $\mu=\langle\mu\rangle+\mu^{\prime}, E=\langle E\rangle+E^{\prime}, \quad$ справедливы соотношения $\langle\mu(Z)\rangle=\mu\left(Z_{d}\right)$, $\langle E(Z)\rangle=E\left(Z_{s}\right), \mu^{\prime} \ll\langle\mu\rangle, E^{\prime} \ll\langle E\rangle$. Согласно (1.8), $Z_{s}$ можно определить из уравнения ( $m=1$ )

$$
0=-Z_{s} I_{A}\left(\frac{1}{t_{*}} \int_{t}^{t+t_{*}}|\sin \omega \tau| d \tau\right)+\beta Z_{s}^{1-n}\left(1-Z_{s}\right) \frac{\mu\left(Z_{s}\right)}{\mu_{\infty}} r_{1}^{2}\left(\frac{1}{t_{*}} \int_{t}^{t+t_{*}} \sin ^{2} \omega \tau d \tau\right)
$$

При $t . \omega \ll 1$ после интегрирования получим

$$
\begin{equation*}
Z_{s}^{n}\left(1-Z_{s}\right) \mu\left(Z_{s}\right)=\frac{4 \mu_{\infty}}{\pi \beta I_{\Lambda}} \tag{3.1}
\end{equation*}
$$

С учетом (1.9) это соотношение можно переписать в виде следующего уравнения для $Z_{\text {s }}$ :

$$
\frac{Z_{s}^{n}}{\left(1-Z_{s}\right)}=q, \quad q=\beta\left(\frac{1}{2} \sqrt{\pi I_{A}}+a\right)^{2}
$$

В частности, для $n=1 / 2$ получаем

$$
Z_{s}=\frac{\left(\sqrt{1+4 q^{2}}-1\right)^{2}}{4 q^{2}}
$$

Подстановка (3.1) в (1.9) дает следующую зависимость осредненного значения вязкости от амплитуды скорости сдвига:

$$
\begin{equation*}
\langle\mu\rangle=\mu_{\infty}\left[1+a \sqrt{\frac{4}{\pi I_{A}}}\right]^{2} \tag{3.2}
\end{equation*}
$$

Для установившегося (в указанном выше смысле) колебательного режима осредненную комплексную вязкость, согласно уравнению (1.12), можно представить в виде

$$
\begin{align*}
& \left\langle\mu^{*}\right\rangle=\mu^{\prime}-i \mu^{\prime \prime}, \quad \mu^{\prime}=\langle\mu\rangle \frac{1+\left\langle\lambda_{1}\right\rangle\left\langle\lambda_{2}\right\rangle \omega^{2}}{1+\left\langle\lambda_{1}\right\rangle^{2} \omega^{2}}  \tag{3.3}\\
& \mu^{\prime \prime}=\langle\mu\rangle \frac{\left(\left\langle\lambda_{1}\right\rangle-\left\langle\lambda_{2}\right\rangle\right) \omega^{2}}{1+\left\langle\lambda_{1}\right\rangle^{2} \omega^{2}}
\end{align*}
$$

где $\mu^{\prime}, \mu^{\prime \prime}$ - соответственно вязкая и упругая составляющие комплексной вязкости. Характерные зависимости этих составляющих от амплитуды скорости сдвига $I_{A}$, рассчитанные согласно (3.2), (3.3), приведены на фиг. 2 (для расчета выбраны значения (2.2), а также $\omega=12,5 \mathrm{c}^{-1}$ ). Качественное поведение кривых соответствует экспериментальным данным [15].

В заключение отметим, что требование удовлетворительного количественного согласования теоретических расчетов на основе системы (1.8), (1.12) и экспериментальных данных для различных реологических ситуаций, в которых существенна агрегация эритроцитов, ставят довольно жесткие требования к эмпирическим константам и функциям, входящим в эту систему. Это обстоятельство позволяет надеяться, что дальнейшее сопоставление теоретических расчетов с экспериментальными данными позволит более детально конхретизировать предложенную модель.

## СПИСОК ЛИТЕРАТУРЫ

1. Астарита Дж., Марруччи Дж. Основы механики неньютоновских жидкостей. М.: Мир, 1978. 309 c.
2. Каро К., Педли Т., Шротер Р., Сид У. Механика кровообращения. М.: Мир, 1981. 624 с.
3. Левтов В. А., Регирер С. А., Шадрина Н. Х. Реология крови. М.: Медицина, 1982. 270 с.
4. Лосев Е. С., Нетребко Н. в., Орлова И. В. Гравитационное оседание агрегирующих частиц в сдвиговом потоке//Изв. АН СССР. МЖГ. 1989. № 2. С. 95-98.
5. Нетребко Н. В., Орлова И. В., Регирер С. А. Квазистационарное пульсирующее течение тиксотропной жидкости в цилиндрической трубке//Изв. АН СССР. МЖГ. 1987. № 1. С. 3-9.
6. Ресирер С. А., ШІадрина Н. Х. О моделях тиксотропных жидкостей//ПмМ. 1978. Т. 42. Вып. 5. C. 856-865.
7. Шадрина Н. Х. О сдвиговых течениях тиксотропной жидкости//Изв. АН СССР. МЖГ. 1978. № 3. C. 3-12.
8. Charara J., Aurengo A., Lelievre J. C., Lacombe C. Quantitative characterization of blood rheological behavior in transient flow with a model including a structure parameter//Biorheology. 1985. V. 22. № 6. P. 509-520.
9. Chien S., King R. G., Skalak R. et al. Visco-elastic properties of human-blood and red-cell suspensions//Biorheology. 1975. V. 12. № 6. P. 341-346.
10. Copley A. L, King R. G., Chien S. et al. Microscopic observations of viscoelasticity of human-blood in steady and oscillatory shear//Biorheology. 1975. V. 12. № 5. P. 257-263.
11. McMillan D. E., Utterback N. Maxwell fluid behavior of blood at low shear rate//Biorheology. 1980. V. 17. № 4. P. 343-354.
12. Quemada D. Towards a unified model of elasto-thixotropy of biofluids//Biorheology. 1984. V. 21. № 4. P. 423-436.
13. Riha P. The unified description of viscoelastic and thixotropic properties of human blood//Rheol. Acta. 1982. V. 21. № 4/5. P. 650-652.
14. Stoltz J. G., Lucius M. Viscoelasticity and thixotropy of human blood//Biorheology. 1981. V. 18. № 3/6. P. 453-473.
15. Thurston G. B. Viscoelasticity of human blood//Biophys. Journal. 1972. V. 12. № 8. P. 1205-1217.
16. Thurston G. B. Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood//Biorheology. 1979. V. 16. № 3. P. 149-162.
