удк $532.516 .5+532.526 .75$
(c) 1990 r.

В. А. КРЫМОВ

О РАСКРУТКЕ ЖКДКОСТИ В ЦИЛИНДРЕ МАЛОЙ ВЫСОТЫ

Данная работа посвящена исследованию процесса раскрутки жидкости (spin-up) внутри дилиндрической полости. Іостановка задачи такова. Жидкость, заключепная внутри циливдрической полости, находится в состоянии покоя. В некоторый момент времени стенки полости начинают вращаться с угловой скоростью Ω. Исследуется процесс установления вращения жидкости с этой угловой скоростью. Задача характеризуется двумя безразмерными параметрами: числом Экмана $\mathrm{E}=v / \Omega h^{2}$ и аспектным отношением h / R_{0}, где v-коәффициент кинематической вязкости, h высота цилиндрической полости, R_{0} - ее радиус. В [1, 2] теоретически и экспериментально был рассмотрен линейный случай раскрутки, когда жидкость вместе с полостью в начальный момент уже находится в состоянии квазитвердого вращения и получает малоө приращение угловой скорости. Оказалось, что угловая скорость вращения жидкости подстраивается к угловой скорости вращения полости за характерное время $\tau_{e}=h / \sqrt{\Omega v}$.

В настоящей статье рассматривается случай раскрутки из состояния покоя при малых числах Е. В начальный момент вблизи торцевых границ цилиндра образуются тонкие экмановские пограничные слои. Ввутри погранслоев жидкость раскручивается за счет вязких сил, тогда как основная масса жидкости (внутренвяя область) между похранслоями в начальный момент времени ненодвижна. Вращающаяся жидкость внутри погранслоев центробежными силами отбрасывается на боковую стенку и поступает вдоль нее во внутреннюю область, обладая избы-

Фиг. 1 точным моментом вращения. Постоянный приток вращающейся жидкости из погранслоев вблизи боковой стенки приводит к созданию относительно слабой меридиональной циркуляции (фиг. 1). Таким образом во внутренней области образуется граница раздела между вращающейся и неподвижной жидкостью, распространяющаяся к оси цилиндра. Если толщина границы раздела мала по сравнению с радиусом, то можно ожидать, что она будет распространяться автомодельным образом. Обнаружению и исследованию этого эффекта посвящена настоящая статья.

1. Теоретическая модель. Аналитическая модель импульсной раскрутки жидкости из состояния нокоя была предложена в [3]. В этой работе предполагалось, что: экмановские пограничные слои, возникающие вблизи торцевых границ полости, квазистационарны; боковые стенки полости не оказывают воздействия на перенос массы в пограничных слоях; пограничные слои можно считать локально кармановскими [4].

Исходя из результатов [5], в [3] была предложена зависимость для радиальной скорости u, индуцируемой во внутренней области пограничными слоями

$$
\begin{equation*}
u=\chi \mathrm{E}^{1 / 2}(v-r \Omega) \tag{1.1}
\end{equation*}
$$

где v - азимутальная скорость, χ - коэффициент порядка единицы. Уравнение, описывающее изменение скорости вращения жидкости во времени,

имеет вид [3]

$$
\begin{gather*}
\frac{\partial V}{\partial \tau}+\chi(V-R)\left(\frac{\partial V}{\partial R}+\frac{V}{R}\right)=\frac{E^{1 / 2}}{A^{2}}\left(\frac{\partial^{2} V}{\partial R^{2}}+\frac{\partial}{\partial R} \frac{V}{R}\right) \tag{1.2}\\
R=r / R_{0}, \quad V=v / \Omega R_{0}, \tau=t / \tau_{e}, A=R_{0} / h
\end{gather*}
$$

где R_{0} - радиус полости. Член в правой части данного уравнения описывает влияние вязкости на процесс раскрутки жидкости. Коәффициент, стоящий перед ним, равен квадрату отношения характерной толщины внешнего слоя Стюартсона $O\left(\mathrm{E}^{1 / 4}\right)$ [1] к радиусу цилиндрической полости, поэтому в дальнейшем будем по аналогии с числом Экмана называть его числом Стюартсона St.

Для случая $\mathrm{St}=A^{-2} \mathrm{E}^{1 / 2} \ll 1$ в [3] найдено аналитическое решение

$$
\begin{gather*}
V=0 \quad(R \leqslant \exp (-\tau \chi)) \\
V=\frac{R^{2} \exp (2 \tau \chi)-1}{R(\exp (2 \tau \chi)-1)} \quad(R \leqslant \exp (-\tau \chi)) \tag{1.3}
\end{gather*}
$$

Данное решение показывает, что в жидкости распространяется фронт вращения в направлении оси вращения по закону $R=\exp (-\chi \tau)$. Последующие экспериментальные исследования [6-8] подтвердили существование распространяющегося фронта вращения. Однако его форма и скорость распространения оказались отличными от предсказанных в [3] и не универсальными. Следует отметить, что численные расчеты на базе более полной системы уравнений находятся в хорошем согласии с экспериментальными результатами [7, 9].

Уравнение (1.2) без правой части (т. е. при $\mathrm{St} \ll 1$) допускает семейство автомодельных решений, описывающее распространение фронта раскрутки без изменения его формы. (Данное решение получено Д. Ю. Маниным.) Сделав в (1.2) подстановку $V=R \Omega(c \tau-\ln R)$, легко нолучить в неявном виде закон автомодельного распространения фронта вращения ($c<-1$ скорость распространения фронта)

$$
\begin{equation*}
\tau=\frac{1}{2 \chi} \ln \frac{\Omega^{1+\chi / c}}{1-\Omega}+\frac{1}{c} \ln R \tag{1.4}
\end{equation*}
$$

Јегко видеть, что данное решение представляет собой волну, распространяющуюся без изменения формы в координатах $(\tau, \ln R)$.

В эксверименте малых чисел Стюартсона можно достигнуть, уменьшая число Экмана или аспектное отношение полости. Однако второй способ осуществить легче экспериментально. Поэтому в настоящей работе в отличие от предыдущих экспериментальных исследований был выбран цилиндр малой высоты.
2. Экспериментальная установка. Основой экспериментальной установки (фиг. 1) был плексигласовый куб, в котором выточена цилиндрическая полость [10,11]. В полости размещались два плоских диска радиусом $R_{0}=10 \mathrm{~cm}$. Общая ось вращения дисков перпендикулярна каждому из них и совпадает с осью симметрии полости. Зазор между краями дисков и внутренней стенкой не превышал $0,5 \mathrm{~m}$. Расстояние между дисками h варьировалось в пределах от 0,8 до 2,0 см. Полость заполнялась раствором глицерина в воде (v изменялся от 0,01 до $0,05 \mathrm{~cm}^{2} / \mathrm{c}$). Диски приводились во вращение с постоянной угловой скоростью, которую можно было выбирать в пределах от 0,9 до $9 \mathrm{c}^{-1}$. Это позволило исследовать процесс раскрутки жидкости в большом диапазоне чисел Экмана ($\mathrm{E}=0,02-0,0003$) и Стюартсонд ($\mathrm{St}=3 \cdot 10^{-2}-3 \cdot 10^{-4}$).

Измерения проводились с помощью лазер-доплер-авемометра фирмы «DANTEC», результаты обрабатывались на ПЭВМ «WEST PC-1600». В экспериментах измерялась азимутальная скорость вращения жидкости на средней плоскости между дисками.

Согласно результатам работы [10], влияние неподвижной боковой стенки распространяется в глубь жидкости на расстояние порядка $h<R_{0}$, поэтому после раскрутки жидкости основная ее масса вращается как единое целое вместе с дисками. Равенство угловой скорости жидкости в состоянии квазитвердого вращевия и угловой скорости дисков проверялось независимыми измерениями. Для исследования

Фиг. 2

изменения формы распространяющегося фронта раскрутки измерения проводились на различных радиусах в диапазоне $0,2<R<0,9$.
3. Невязкий режим раскрутки жидкости. На фиг. 2 приведены экспериментальные зависимости (a) безразмерной азимутальной скорости жидкости ω от безразмерного времени $\tau\left(t / \tau_{e}\right)$ при параметрах течения $\mathrm{E}=$ $=0,002, \mathrm{St}=2,8 \cdot 10^{-4}$ для значений радиуса $R=0,86 ; 0,71 ; 0,64 ; 0,5 ; 0,44$; 0,$37 ; 0,28 ; 0,21$ ($1-8$ соответственно). На этом же рисунке нанесены теоретические зависимости (1.3)-(в) и (1.4)-(б). Из рисунка видно, тто на больших радиусах (начальный этап распространения фронта раскрутки) әкспериментальная зависимость довольно хорошо описывается решением (1.3). Впоследствии происходит постепенное установление автомодельного режима распространения по зависимости (1.4). Расхождение с зависимостью (1.4) начинается при малых R, когда ширина фронта, уменьшаясь по мере приближепия к оси, становится сравнима с характерной шириной слоя Стюартсона и возрастает роль вязких сил. Аналогичные результаты были получены и для других параметров E п St, при которых проводились эксперименты.

Фиг. 4

Фиг. 5

Универсальность зависимости безразмерной угловой скорости от безразмерного времени для различных значений E и St иллюстрирует фиг. 3, где эти зависимости приведены к радиусу $R=0,5$ сдвигом по времени на величину $c \cdot \ln (R / 0,5)$. Зависимости на фиг. 3 соответствуют (по длине пунктира): $1-\mathrm{E}=0,0003, \mathrm{St}=7 \cdot 10^{-4}, R=0,61 ; 2-\mathrm{E}=0,0006, \cdot \mathrm{St}=5 \cdot 10^{-4}$, $R=0,44 ; 3-5-\mathrm{E}=0,002, \mathrm{St}=2,8 \cdot 10^{-4}, R=0,64 ; 0,44 ; 0,28$. Безразмерные временные зависимости угловой скорости вращения имеют одну и ту же форму для различных параметров течения и различных радиусов. Это подтверждает существование автомодельного режима распространения фронта раскрутки.

При $\mathrm{E}<0,001$ наблюдалась генерадия колебаний угловой скорости. Они видны на ряде реализаций из фиг. 3. Колебания имеют частоту, близкую к Ω, возникают одновременно на различных радиусах и скорее всего связаны с нарушением осевой симметрии фронта раскрутки.

На фиг. 4 представлены зависимости угловой скорости вращения жидкости от радиуса для различных значений $\tau(\tau=0,6 ; 0,9 ; 1,2 ; 1,5)$. Кривые - теоретическая зависимость (1.4), 1 - течение с параметрами $\mathrm{E}=$ $=0,002, \mathrm{St}=2,8 \cdot 10^{-4}, 2-\mathrm{E}=0,0006, \mathrm{St}=5 \cdot 10^{-4} \quad$ (на данной зависимости осреднены колебания, о которых говорилось выше). Видно, что при $R<$ $<0,7$ устанавливается автомодельная форма распространяющегося фронта раскрутки.

На основании проведенных экспериментов были выбраны наилучшие значения параметров c и χ, входящих в формулу (1.4). Значение $c=-1.1$ соответствует экспериментальной скорости распространения фронта раскрутки на автомодельной стадии. Она не зависит от параметров течения. Значение с определялось по зависимости времени прихода начала фронта от радиуса. При данном значении $с$ наилучшее совпадение формы экспериментальных и теоретических кривых обеспечивается при $\chi=1,0$. Все теоретические зависимости на фиг. 2 и 4 приведены при данных значениях параметров. Таким образом, экспериментальные результаты дают наиболее оптимальное значение константы χ, входящей в зависимость (1.1) [1].

Проведенные эксперименты позволяют определить область значений Е и St , при которых распространение фронта раскрутки носит автомодельный характер. В проведенных экспериментах автомодельное распространение фронта наблюдалось только при $\mathrm{E}<0,002$. При $\mathrm{E}>0,002$ форма фронта раскрутки близка к автомодельной, однако за счет вязких сил скорость распространения становится больше автомодельного значения $c=-1,1$. На основании данных настоящего эксперимента и результатов [7], где режим раскрутки неавтомодельный, можно выделить область автомодельного режима раскрутки по $\mathrm{St}: \mathrm{St}<1 \cdot 10^{-3}$. Таким образом, автомодельный режим раскрутки реализуется при $\mathrm{E}<0,002$ и $\mathrm{St}<1 \cdot 10^{-3}$. На фиг. 5 приведены

данные о времени прихода начала ($\omega=0,05 \Omega$) и середины фронта ($\omega=$ $=0,5 \Omega$) на радиус $R=0,39$, полученные в различных экспериментальных работах: $1-[7], 2-[6], 3-[8], 4$ - настоящая работа. На оси помечено (5) время прихода, вычисленное по формуле (1.3) [3]. Из рисунка видна постепенная по St стабилизация скорости распространения фронта.
5. Вязкий режим раскрутки жидкости. В вязком режиме раскрутка происходит за счет трения между горизонтальными слоями жидкости, аналогично тому как проходило торможение жидкости при числах E близких к 1 [10]. На фиг. 6 приведены зависимости безразмерной угловой скорости от «вязкого» времени $\tau_{v}=t /\left(h^{2} / v\right)$ с параметрами течения (по длине пунктира): $1-3-v=0,01 \mathrm{~cm}^{2} / \mathbf{c}, \Omega=0,9 \mathrm{c}^{-1}, h=0,8 \mathrm{cм} \quad(\mathrm{E}=0,017, \mathrm{St}=0,0008)$, $R=0,88 ; 0,57 ; 0,43$ п $4-5-v=0,035 \mathrm{~cm}^{2} / \mathrm{c}, \Omega=0,9 \mathrm{c}^{-1}, h=1,5$ см ($\mathrm{E}=0,016$, $\mathrm{St}=0,03$) $, R=0,66 ; 0,46$. Из рисунка видно, что если вблизи стенки (на начальном этапе раскрутки) и существует распространяющийся фронт раскрутки, то на малых радиусах раскрутка происходит вязким образом до прихода фронта. Об этом свидетельствует то, что обезразмеренные эксцериментальные зависимости при малых R ложатся на единую кривую. Очевидно, что чем больше E , тем больше по R будет область, в которой раскрутка жидкости происходит вязким образом. В области значений $0,1<\omega<0,9$ экспериментальные данные удовлетворительно аппроксимируются экспоненциальной зависимостью с показателем $k=(17 \pm 3) /\left(h^{2} / v\right)$. Отметим, что в эксперименте по вязкому торможению жидкости [10] был получен показатель $k=10 /\left(h^{2} / v\right)$.

Таким образом, проведенные эксперименты показывают, что при раскрутке жидкости в цилиндре малой высоты ($h \ll R_{0}$) существуют две об. ласти параметров течения с универсальными зависимостями угловой скорости вращения жидкости от времени: область больших чисел Экмана с вязким режимом раскрутки жидкости и область малых чисел Экмана и Стюартсона, где наблюдался распространяющийся фронт раскрутки, описываемый зависимостью (1.4).

Автор благодарит Ф. В. Должанского за постановку задачи и Д. Ю. Манина за конструктивное обсуждение результатов эксперимента.

СПИСОК ЈИТЕРАТУРЫ

1. Гринспен X. Теория вращающихся жидкостей. Л.: Гидрометеоиздат, 1975. 304 с. 2. Greenspan H. P., Howard L. N. On a time-dependent motion of a rotating fluid // J. Fluid Mech. 1963. V. 17. Pt 3. P. 385-404.
2. Wedemeyer E. H. The unsteady flow within a spinning cylinder // J. Fluid Mech. 1964. V. 20. Pt 3. P. 383-399.
3. Karman Th., von. Uber laminare und turbulente Reibung //Z. angew. Math. und Mech. 1921. B. 1. H. 4. S. 233-252.
4. Rogers M. N., Lance G. N. The rotationary symmetric flow of a viscous fluid in the presence of an infinite rotating disk // J. Fluid Mech. 1960. V. 7. Pt 4. P. 617-631.
5. Watkins W. B., Hussey R. G. Spin-up from rest in a cylinder. // Phys. Fluids. 1977. V. 20. № 10. Pt 1. P. 1596-1604.
6. Hyun J. M., Leslie F., Fowlis W. W., Warn-Varnas A. Numerical solutions for spinup from rest in a cylinder // J. Fluid Mech. 1983. V. 127. P. 263-281.
7. Savas O. On flow visualization using reflective flakes // J. Fluid Mech. 1985. V. 152. P. 235-248.
8. Warn-Varnas A., Fowlis W. W., Piaosek S., Lee S. M. Numerical solutions and la-ser-Doppler measurements of spin-up // J. Fluid Mech. 1978. V. 85. № 4. P. 609-639.
9. Должанский Ф. В., Крымов В. А. О торможении жидкости в цилиндре малой высоты // Изв. АН ССССР. МЖГ. 1985. № 1. С. 19-25.
10. Крымов В. А., Манин Д. Ю. Торможение жидкости в цилиндре малой высоты при больших числах Рейнольдса // Изв. АН СССР. МЖГ. 1986. № 3. С. 39-46.

Москва

