БАЕКИН В. А.

ОПРЕДЕЛЯЮЩИЕ УРАВНЕНИЯ ДИСПЕРГИРОВАННОИ ВОЛОКНИСТОИ СУСІІЕНИИ НЕМАЛОЙ КОНЦЕНТРАЦИИ

Под волокнистой суспензией обычно понимается двухфазная среда, одну фазу которой составляет несжимаемая жидкость, а другую-взвешенные в ней волокна $[1,2]$. В покоящейся суспензии при концентрациях c, больших концентрации седиментации c_{s} (для волокон, применяемых в целлюлозно-бумажной промышленности массовая концентрация c_{s} порядка $0,5 \%$ [3]), волокна, взаимодействуя между собой, образуют структуру (так называемую сеть волокон) которая обладает свойствами твердого тела - упругостью и прочностью [1-3]. В целом волокнистая суспензия представляет собой насыщенную пористую среду с упругим скелетом. В таком состоянии ее называют структурированной [2].

При достаточной внешней нагрузке сеть волокон разрушается, и по своим механическим свойствам суспензия становится аналогична жидкости, вообще говоря, неньютоновской [1, 2]. Такая суспензия называется диспергированной [2]. Суспензии, концентрация которых меньше концентрации седиментации, очевидно, всегда диспергированные. Как и для любой жидкости, для диспергированной сусшензии можно выделить ламинарный, турбулентный и переходный режимы течения.

Определяющие уравнения разбавленных суспензий удлиненных жестких частиц (волокон) при ламинарном течении получены в [4-6]. Суспензия жестких волокон, между которыми нет непосредственного взаимодействия, может рассматриваться просто как однородная трансверсально-изотропная жидкость [7]. На практике, например в целлюлозно-бумажной промышленности, как правило, используются суспензии \mathbf{c} концентрадиями, бо́льшими концентрации седиментации c_{s}. Типичны ситуации, когда, во-первых, суспензия в одной части области течения находится в диспергированном состоянии, а в другой - в структурированном (переходное течение) и, во-вторых, диспергированная суспензия не может рассматриваться как разбавленная вследствие непосредственного взаимодействия волокон друг с другом [1, 2]. В этом случае непосредственное применение моделей [4-6] неоправданно, и требуется либо их изменение, либо построение новых моделей.

В [8] дан пример решения задачи о переходном течении волокнистой суспензии в прямой круглой трубе на базе видоизмененной модели Эриксена - Лесли [9,10$]$ ориентированной жидкости. Предложенная модель, имея сходство с моделями [4-6], все же заметно отличается от них. Хорошее совпадение решения с экспериментальными результатами послужило стимулом для того, чтобы в настоящей статье разработать модель в общем виде. В качестве примера решена задача о переходном течении Куэтта между соосными цилиндрами. Решение сравнивается с экспериментальными результатами [2].

1. Параметры. Уравнения. Пусть диспергированная волокнистая суспензия находится в состоянии ламинарного течения. Запишем уравнения движения и состояния суспензии, рассматривая ее как совокупность двух взаимопроникающих континуумов: континуума жидкой фазы и континуума волокон [11]. Величины, относящиеся к жидкой фазе и волокнам, будут отмечаться соответственно верхними индексами (1), (2). Система координат x^{1}, x^{2}, x^{3} произвольная.

Если $\rho_{0}{ }^{(1)}, \rho_{0}{ }^{(2)}$ - истинные плотности жидкой фазы и насыщенных жидкостью волокон, $m^{(\alpha)}$ - объемная доля фазы в суспензии, то эффективные плотности континуумов определяются формулами

$$
\begin{equation*}
\rho^{(\alpha)}=m^{(\alpha)} \rho_{0}^{(\alpha)}, \quad m^{(1)}+m^{(2)}=1, \quad \alpha=1,2 \tag{1.1}
\end{equation*}
$$

Пусть $t_{i j}^{(\alpha)}$ - осредненные по объему напряжения в континуумах. Эффективные напряжения $\sigma_{i j}^{(\alpha)}$ определим формулами

$$
\begin{equation*}
t_{i j}^{(\alpha)}=-m^{(\alpha)} p g_{i j}+\sigma_{i j}^{(\alpha)}, \quad p=-1 / 3 t_{s}^{s(1)} \tag{1.2}
\end{equation*}
$$

где $g_{i j}$ - координаты метрического тензора, p - давление в жидкой фазе. Здесь и далее по одинаковым разновысоким индексам предполагается суммирование от 1 до 3.

Уравнения неразрывности и импульсов фаз имеют вид

$$
\begin{gather*}
\frac{\partial \rho^{(\alpha)}}{\partial t}+\nabla_{s} \rho^{(\alpha)} v^{s(\alpha)}=0 \tag{1.3}\\
\rho^{(\alpha)} \frac{d^{(\alpha)} v_{i}^{(\alpha)}}{d t}=-m^{(\alpha)} \nabla_{i} p+\nabla_{s} \sigma_{i}^{s(\alpha)}+\rho^{(\alpha)} f_{i}^{(\alpha)}+R_{i}^{(\alpha)} \tag{1.4}\\
\frac{d^{(\alpha)}}{d t}=\frac{\partial}{\partial t}+v^{s(\alpha)} \nabla_{s}
\end{gather*}
$$

где $v^{(\alpha)}$ - скорость в точке континуума, $f^{(\alpha)}$ - плотность массовых сил, $R^{(\alpha)}$ приходящаяся на единицу объема сила, действующая со стороны одной фазы на другую.

Ограничимся изотермическими процессами и по этой причине опустим уравнения энергии.

Систему уравнений (1.3), (1.4) необходимо донолнить уравнениями состояния. В отличие от структурированного состояния для диспергированной суспензии характерно отсутствие прочной структуры. Волокна движутся друг относительно друга, взаимодействуя между собой и окружающей жидкой фазой. В потоке с поперечным градиентом жидкая фаза оказывает ориентирующее воздействие на волокна [2]. В свою очередь ориентированные волокна определяют течение жидкой фазы вблизи себя. Таким образом, и континуум волокон, и континуум жидкой фазы представляют собой анизотропные среды, в каждой точке которых свойства зависят от преимущественной ориентации волокон.

К настоящему времени для описания текучих анизотропных сред предложено несколько моделей разной степени сложности [12]. Одной из самых простых является модель ориентированной жидкости Эриксена Лесли. Возьмем ее в качестве основы для построения модели диспергированной суспензии.

Кинематическими параметрами суспензии будем считать скорости континуумов $\mathbf{v}^{(i)}$ в точке, которые вообще говоря, различны, а также общий для континуумов единичный вектор - ориентир \mathbf{n}.

Континуум жидкой фазы будем рассматривать как вязкую трансвер-сально-пзотропную жидкость с вектором анизотропии \mathbf{n}, вязкие эффективные напряжения $\sigma_{i j}^{(1)}$ в которой определяются уравнениями

$$
\begin{gather*}
\sigma_{i j}^{(1)}=\mu_{1} n^{s} n^{t} e_{s t}^{(1)} n_{i} n_{j}+\mu_{2} e_{i j}^{(1)}+\mu_{3}\left(n_{i} n^{s} e_{s j}^{(1)}+n_{j} n^{s} e_{s i}^{(1)}\right) \tag{1.5}\\
2 e_{i j}^{(1)}=\nabla_{i} v_{j}^{(1)}+\nabla_{j} v_{i}^{(1)}
\end{gather*}
$$

где $n_{i}, n^{j}(i, j=1,2,3)$ - координаты вектора $\mathbf{n} ; \mu_{1}, \mu_{2}, \mu_{3}$ - константы, зависящие от сорта волокон и концентрации.

Уравнения (1.5), а не более поздние его обобщения [6,10] обеспечивают наблюдаемый в экспериментах логарифмический профиль скоростей диспергированной суспензии при переходном течении в трубе [8].

Материальными носителями ориентации в суспензии являются волокна, поэтому уравнения, описывающие изменение вектора-ориентира \mathbf{n}, будем рассматривать как уравнения ориентированного континуума волокон.

В качестве таковых примем уравнения модели Эриксена - Лесли [9, 10]

$$
\begin{equation*}
I \frac{d^{(2)}}{d t}\left(\frac{d^{(2)} n_{i}}{d t}\right)=\nabla_{s} \mu_{i}^{s}+g_{i}+G_{i} \tag{1.6}
\end{equation*}
$$

где I-постоянная, характеризующая инерционные свойства среды при повороте вектора-ориентира; $\mu_{i j}$ - обобщенные напряжения, g_{i}, G_{i} - соответственно внутренние и внешние объемные силы, вызывающие изменение вектора-ориентира. Величины $\mu_{i j}, g_{i}$ задаются с помощью определяющих уравнений.

При формулировке определяющих уравнений континуума волокон учтем неоднородность полей плотности $\rho^{(2)}$ и вектора n, а также взаимодействие волокон при их относительном перемещении. Считая, что неоднородность поля \mathbf{n} в ориентированных средах сказывается сходным образом, определяющие уравнения континуума волокон введем, следуя [9, 10]:

$$
\begin{gather*}
\sigma_{i j}^{(2)}=-p^{(2)} g_{i j}-\rho^{(2)} \frac{\partial F}{\partial\left(\nabla^{j} n^{s}\right)} \nabla_{i} n^{s}+\tau_{i j} \tag{1.7}\\
\mu_{i j}=\beta_{j} n_{i}+\rho^{(2)} \frac{\partial F}{\partial\left(\nabla^{j} n^{i}\right)} \\
g_{i}=\gamma n_{i}+\beta^{s} \nabla_{s} n_{i}-\rho^{(2)} \frac{\partial F}{\partial n^{i}}, \quad p^{(2)}=\left(\rho^{(2)}\right)^{2} \frac{\partial F}{\partial \rho^{(2)}} \\
2 \rho^{(2)} F=2 \rho^{(2)} F_{0}\left(\rho^{(2)}\right)+k_{22}\left(\nabla^{s} n_{t} \nabla_{s} n^{t}-\nabla_{t} n^{s} \nabla_{s} n^{t}-n^{s} n^{t} \nabla_{s} n^{r} \nabla_{t} n_{r}\right)
\end{gather*}
$$

где F - свободная энергия единицы массы; k_{22} - константа, зависящая от сорта волокон и концентрации суспензии; $\beta^{1}, \beta^{2}, \beta^{3}, \gamma$ - неопределенные функции модели Эриксена - Лесли, обеспечивающие непротиворечивость модели при условии $|\mathbf{n}|=1$.

Свободная энергия F здесь определена с учетом условий, обеспечивающих логарифмический профиль скоростей при переходном течении в трубе [8]. При $\rho^{(2)}=$ const четвертое уравнение (1.7) теряет смысл и величина $p^{(2)}$ должна определяться при решении задачи.

По определению [10], напряжения $\tau_{i j}$ в первом уравнении (1.7) характеризуют взаимодействие волокон при их движении друг относительно друга. Принимая во внимание, что континуум волокон в диспергированной суспензии получается в результате разрушения сети волокон в структурированном состоянии, а относительное движение волокон ввиду их большой стесненности является главным образом относительным скольжением, $\tau_{i j}$ определим как напряжения при пластическом течении. Вообще говоря, условие пластического течения континуума волокон должно быть сформулировано с учетом анизотропии. Однако, считая, что наведенная анизотропия слабо влияет на скольжение волокон друг относительно друга, в качестве первого приближения можно принять условия идеально пластического течения, например классические условия Треска или Мизеса. Для среды с условиями текучести Мизеса напряжения $\tau_{i j}$ определяются формулами [13]

$$
\begin{equation*}
\tau_{i j}=\frac{\sqrt{2} \sigma_{0} e_{i j}^{(2)}}{\sqrt{e_{s t}^{(2)} e^{s t(2)}}} \quad e_{i j}^{(2)}=\frac{1}{2}\left(\nabla_{i} v_{j}^{(2)}+\nabla_{j} v_{i}^{(2)}\right) \tag{1.8}
\end{equation*}
$$

где σ_{0} - предел текучести сети волокон при сдвиге.
Силы взаимодействия фаз $\mathbf{R}^{(\alpha)}$ определяются разностью скоростей $\mathbf{v}^{(1)}$ и $\mathbf{v}^{(2)}$. Если разность скоростей невелика, то эти силы можно задать с помощью закона Дарсп [11]

$$
\mathbf{R}^{(1)}=-\mathbf{R}^{(2)}=k\left(\mathbf{v}^{(2)}-\mathbf{v}^{(1)}\right)
$$

где k - константа. В противном случае используются более сложные зависимости.

Из формул (1.5), (1.7) и (1.8) видно, что напряжения в континуумах определяются независимо. При некоторых условиях эти напряжения в одной и той же точке потока могут отличаться знаком. Такая ситуация наблюдается, например, при переходном течении суспензии в трубе, и тогда отмечается интересный эффект снижения сопротивления при течении суспензии по сравнению с сопротивлением жидкой фазы [8].
2. Течение Куэтта. Пусть в пространство между бесконечными соосными цилиндрами (радиус внутреннего цилиндра R_{1}, а внешнего $-R_{2}$) помещена волокнистая суспензия массовой концентрации $c>c_{s}$. Имея в виду сравнение с экспериментальными результатами [2], внутренний цилиндр будем считать неподвижным, внешний - вращающимся с постоянной угловой скоростью ω_{2}. Пусть ω_{2} такова, что суспензия находится в состоянии переходного течения. Найдем связь между скоростью ω_{2} и касательными напряжениями на поверхности цилиндров.

Задачу будем решать в цилиндрической системе координат r, φ, x : ось x - по оси цилиндров, угол φ отсчитывается в сторону вращения внешнего цилиндра.

При переходном течении область, занимаемая суспензией, состоит из области, в которой волокна образуют сеть, и области, в которой сеть волокон разрушена. Поскольку наибольшие касательные напряжения возникают в области, прилегающей к внутреннему цилиндру, примем, что в области $R_{1}<r<R_{0}$ суспензия находится в диспергированном состоянии, а $R_{0} \leqslant r \leqslant R_{2}$ - это область с неразрушенной сетью волокон, причем $r=R_{0}$ гранида областей. Кроме того, будем считать, что область $R_{0} \leqslant r \leqslant R_{2}$ вращается вместе с подвижным цилиндром с той же угловой скоростью ω_{2}. В пользу этих предположений говорит анализ возможных стержневых течений Куэтта между соосными цилиндрами, приведенный в [14].

Для описания движения диспергированной суспензии в области $R_{1}<$ $<r<K_{0}$ воспользуемся моделью разд. 1 , сделав некоторые упрощающие предположения. Если пренебречь силами тяжести, то с учетом симметрии течения кинематические параметры можно искать в виде

$$
\begin{gather*}
v_{r}^{(\alpha)}=v_{x}^{(\alpha)}=0, v_{\varphi}^{(\alpha)}=v_{\varphi}^{(\alpha)}(r), p=p(r) \tag{2.1}\\
n_{r}=\sin \theta(r), n_{\varphi}=\cos \theta(r), n_{x}=0 \tag{2.2}
\end{gather*}
$$

где θ - угол между вектором-ориентиром и линией тока, $\alpha=1,2$.
Подставляя формулы (2.1) в уравнения состояния (1.5), (1.7), (1.8), полагая при этом для удобства $\nu_{\varphi}{ }^{(1)}=r \omega(r)$, где $\omega(r)$ - неизвестная функция, получим

$$
\sigma_{r r}^{(1)}=\left(\mu_{1} \sin ^{2} \theta+\mu_{3}\right) r \omega^{\prime} \sin \theta \cos \theta, \quad \sigma_{q p}^{(1)}=\left(\mu_{1} \cos ^{2} \theta+\mu_{3}\right) r \omega^{\prime} \sin \theta \cos \theta
$$

$$
\begin{gather*}
\sigma_{r \varphi}^{(1)}=\sigma_{\varphi r}^{(1)}=\left(\mu_{0}+\mu_{1} \sin ^{2} \theta \cos ^{2} \theta\right) r \omega^{\prime} \tag{2.3}\\
\sigma_{x x}^{(1)}=\sigma_{x \varphi}^{(1)}=\sigma_{\varphi x}^{(1)}=\sigma_{x r}^{(1)}=\sigma_{r x}^{(1)}=0, \quad \sigma_{\varphi r}^{(2)}=\sigma_{r \varphi}^{(2)}=\sigma_{0} \operatorname{sgn} e_{\varphi r}^{(2)} \\
\sigma_{r r}^{(2)}=\sigma_{\varphi \varphi}^{(2)}=\sigma_{x x}^{(2)}=\sigma_{x r}^{(2)}=\sigma_{r x}^{(2)}=\sigma_{\varphi x}^{(2)}=\sigma_{x \varphi}^{(2)}=0 \\
\mu_{r r}-\beta_{r} \sin \theta=\beta_{\varphi} \cos \theta-\mu_{\varphi \varphi}=\Phi \sin \theta \cos \theta \\
\mu_{r \varphi}=\beta_{\varphi} \sin \theta-\Phi \sin ^{2} \theta, \mu_{\varphi r}=\beta_{r} \cos \theta+\Phi \cos ^{2} \theta \\
\mu_{r x}=\beta_{x} \sin \theta, \mu_{\varphi x}=\beta_{x} \cos \theta, \mu_{x x}=\mu_{x \varphi}=\mu_{x r}=0 \\
g_{r}=\gamma \sin \theta+\left(\beta_{r} \cos \theta-\Phi\right) \theta^{\prime}-\beta_{\varphi}(\cos \theta) / r, g_{\varphi}=\gamma \cos \theta-\beta_{r} \theta^{\prime} \sin \theta+ \\
+\left(\beta_{\varphi} \sin \theta+\Phi\right) / r, g_{x}=0 \\
\mu_{0}=1 / 2\left(\mu_{2}+\mu_{3}\right), \Phi=k_{22}\left(\cos \theta / r-\theta^{\prime} \sin \theta\right)
\end{gather*}
$$

Положим, что оба континуума несжимаемы, т. е. $\rho^{(\alpha)}=$ const. Тогда уравнения неразрывности скоростями (2.1) удовлетворяются тождественно. Из уравнений импульсов не обращаются тождественно в нуль уравнения в проекциях на r и φ. Из этих уравнений ограничимся уравнениями в проекциях на φ, поскольку лишь эти уравнения потребуются для определения профилей скоростей континуумов и касательных напряжений на стенках цилиндров. Тогда

$$
\begin{equation*}
\frac{d \sigma_{\varphi r}^{(\alpha)}}{d r}+\frac{2 \sigma_{\varphi r}^{(\alpha)}}{r}+(-1)^{\alpha} k\left(v_{\varphi}^{(1)}-v_{\varphi}^{(2)}\right)=0, \quad \alpha=1,2 \tag{2.4}
\end{equation*}
$$

Подстановка соответствующих выражений (2.3) в уравнения (1.6) дает два уравнения для определения угла θ. Чтобы эти уравнения совпадали, необходимо, чтобы $\beta_{r}=\beta_{\varphi}=\beta_{x}=0$. Поскольку при этом величина γ может быть произвольной, то положим также $\gamma=0$. Тогда, если пренебречь массовыми силами G_{i}, получим следующее уравнение для угла θ :

$$
\begin{align*}
& \sin \theta \cos \theta \frac{d^{2} \theta}{d r^{2}}+\left(\cos ^{2} \theta-2 \sin ^{2} \theta\right)\left(\frac{d \theta}{d r}\right)^{2}+ \\
& +5 \frac{\sin \theta \cos \theta}{r} \frac{d \theta}{d r}-\frac{\cos ^{2} \theta}{r^{2}}=\frac{I v_{\varphi}^{(2)^{2}}}{k_{22} r^{2}} \tag{2.5}
\end{align*}
$$

Система уравнений (2.4), (2.5) довольно сложна для получения точного аналитического решения. Ограничимся предельным случаем течения, когда влияние наведенной анизотропии на течение диспергированной суспензии мало, т. е. $\mu_{1} \sin ^{2} \theta \cos ^{2} \theta \ll \mu_{0}$. Проведенное ниже сравнение с экспериментальными результатами показывает, что такой случай течения действительно реализуется. Итак, положим $\sigma_{\varphi r}^{(1)}=\mu_{0} r \omega^{\prime}$. Интегрирование системы (2.4) дает

$$
\begin{equation*}
\sigma_{\varphi r}=\tau_{1} R_{1}{ }^{2} / r^{2}, \quad \sigma_{\phi r}=\sigma_{\phi r}^{(1)}+\sigma_{\phi r}^{(2)} \tag{2.6}
\end{equation*}
$$

где τ_{1} - касательное напряжение на поверхности цилиндра $r=R_{1}$.
Подставляя в формулу (2.6) выражения для $\sigma_{q r}^{(2)}$ из (2.3) и $\sigma_{4 r}^{(1)}=$ $=\mu_{0} r \omega^{\prime}$, получим

$$
\begin{equation*}
\mu_{0} r \omega^{\prime}+\tau_{0}=\tau_{1} R_{1} / r^{2}, \quad \tau_{0}=\sigma_{0} \operatorname{sgn} e_{ष r}^{(2)} \tag{2.7}
\end{equation*}
$$

При движении суспензии воло́кна не прилипают к твердой стенке [2], поэтому между твердой стенкой и континуумом волокон существует тонкий слой чистой жидкой фазы, которая не может быть отнесена к ориентированному континууму жидкой фазы. Если пренебречь толщиной этого слоя и поставить граничное условие при $r=R_{1}$, то естественно принять $\omega\left(R_{1}\right)=\omega *$, где $\omega *$ - эмпирическая константа. Интегрируя уравнение (2.7) с этим условием, найдем

$$
\begin{equation*}
\omega=\omega *+\frac{1}{\mu_{0}}\left[\frac{\tau_{1}}{2}\left(1-\frac{R_{1}{ }^{2}}{r^{2}}\right)+\tau_{0} \ln \frac{R_{1}}{r}\right] \tag{2.8}
\end{equation*}
$$

Очевидно, $\omega_{2}=\omega\left(R_{0}\right)$. Величина R_{0} определяется из условия равенства моментов касательных напряжений на поверхностях $r=R_{0}$ и $r=R_{1}: \sigma_{0} R_{0}{ }^{2}=$ $=\tau_{1} R_{1}{ }^{2}$. Подставляя R_{0} в формулу (2.8), получим искомую зависимость $\tau_{1}\left(\omega_{2}\right)$ в виде

$$
\begin{equation*}
\omega_{2}=\omega *+\frac{\tau_{1}}{2 \mu_{0}}\left[\left(1-\frac{\sigma_{0}}{\tau_{1}}\right)+\frac{\tau_{0}}{\tau_{1}} \ln \frac{\sigma_{0}}{\tau_{1}}\right] \tag{2.9}
\end{equation*}
$$

На фиг. 1, 2 приведены экспериментальные точки зависимости $\tau_{1}\left(\omega_{2}\right)$ для суспензий беленой сульфитной целлюлозы, охватывающей стержневое и переходноө

Фиг. 2

течения в окрестности точки перехода, в ротационном вискозиметре с внешним вращающимся цилиндром [2]. Радиусы цилиндров: $R_{1}=0,119 \mathrm{~m}, \quad R_{2}=0,130 \mathrm{~m}$. На фиг. 1 степень помола волокна 25° ШР, кривые 1,2 соответствуют $c=0,5$ и $0,8 \%$. На фиг. 2 степень помола 20° ШР, кривые $1,2-c=1$ и 2%. Для наглядности эмпирические точки стержневого течения осреднены штриховой дугой $A B$.

Дуга $B C$ (сплошная линия) - результат расчета по формуле (2.9) при $\tau_{0}=\sigma_{0}$ и при следующих значениях параметров: $\omega *=12,2 ; 15 ; 8,8 ; 10,9 \mathbf{c}^{-1}, \sigma_{0}=0,92 ; 2,1$; 1,$7 ; 4,1$ Па; $\mu_{0}=0,008 ; 0,012 ; 0,018 ; 0,043$ Па.с для $c=0,5 ; 0,8 ; 1,0 ; 2,0 \%$ соответственно. Согласие теоретических и экспериментальных результатов хорошее. Следует отметить, что по порядку величины значения μ_{0} совпадают со значениями вязкости суспензий длинных эллипсоидов вращения [15].

Безусловно, для решения рассмотренной здесь задачи Куэтта можно было обойтись простой моделью вязкопластической среды. Однако для описания переходного течения в трубе такой модели уже недостаточно. Как показано в [8], в развитом переходном течении в трубе в противоположность рассмотренному случаю в диспергированной суспензии реализуется неравенство $\mu_{0} \ll \mu_{1} \sin ^{2} \theta \cos ^{2} \theta$. Моделью, которая охватывает оба предельных случая переходного течения, а также и его промежуточные состояния, является модель, предложенная выше в разд. 1.

ЛИТЕРАТУРА

1. Norman B. G., Moller K., Ek R., Duffy G. G. Hydrodynamics of paper making fibres in water suspension // Fibre-water interactions in paper making. Trans. Symp., Oxford, 1977. V. 1. London: Tech. Sect. Brit. Paper and Board Makers Assn, 1978.
2. Терентьев O. A. Гидродинамика волокнистых суспензий в целлюлозно-бумажном производстве. М.: Лесн. пром-сть, 1980. 248 с.
3. Thalen N., Wahren D. Shear modulus and ultimate shear strength of some paper pulp fibre networks // Svensk Papperstidn. 1964. V. 67. № 7. P. 259-264.
4. Покровский В. Н. Напряжения, вязкость и оптическая анизотропия движущейся суспензии жестких эллипсоидов // Успехи физ. наук. 1971. Т. 105. Вып. 4.
С. $625-643$.
5. Batchelor G. K. The stress generated in a non-dilute suspension of elongated particles by pure straining motion //J. Fluid Mech. 1971. V. 46. Pt. 4. P. 813-829.
6. Hinch E. J., Leal L. G. Constitutive equations in suspension mechanics. Pt. 1. General formulation // J. Fluid Mech. 1975. V. 71. Pt. 3. P. 481-495.
7. Ericksen J. L. Transversely isotropic fluids // Kolloid - Zeitschrift. 1960. B. 173. № 2. S. 117-122.
8. Бабкин B. A. Переходное течение волокнистой суспензии в трубе как течение авизотропной жидкости // Изв. АН СССР. МЖГ. 1985. № 5. С. 91-98.
9. Ericksen J. L. Conservative laws for liquid crystals //Trans. Soc. Rheol. 1961. V. 5. № 1. P. 23-34.
10. Leslie F. M. Some constitutive equations for liquid crystals // Arch. Rat. Mech. and Analysis. 1968. V. 28. № 4. P. 265-283.
11. Николаевский В. Н. Механика пористых и трещиноватых сред. М.: Недра, 1984.
12. Аэро Э. ЛЛ., Булыгин А. Н. Гидромеханика жидких кристаллов // Итоги науки и техники. Гидромеханика. Т. 7. М.: ВИНИТИ, 1973. С. 106-113.
13. Седов Л. И. Механика сплошной среды. Т. 2. М.: Наука, 1970. 568 с.
14. Бабкин В. А. Стержневое течение Куэтта волокнистой суспензии между сооснымы цилиндрами // Изв. АН СССР. МЖГ. 1987. № 6. С. 29-36.
15. Хаппель Дж., Бреннер Г. Гидродинамика при малых числах Рейнольдса. М.:
Мир, 1976. 630 с.

Петрозаводск

