MEXAHИKA

ЖИДКОСТИИГАЗА
№ 6 - 1989

УДК 532.526 .5
1989

ЗУБЦОВ А. В.

АСИМПТОТИЧЕСКАЯ МОДЕЛЬ ОСЕСИММЕТРИЧНОГО РАСПАДА ВИХРЕВОЙ НИТИ В НЕСЖИМАЕМОИ ЖИДКОСТИ

Рассмотрено осесимметричное течение несжимаемой жидкости. Получено точное решение уравнений Эйлера, соответствующее распаду прямолинейной вихревой нити интенсивности Γ_{0} на вихревую нить меньшей интенсивности и коническую вихревую поверхность. Показано, что за точкой распада в области, ограниченной конической вихревой поверхностью, возникают возвратные течения жидкости. Исследование задачи с учетом вязких эффектов при больших числах Рейнольдса позволило установить связи между свободными парамөтрами, входящими в решение уравнений Эйлера. Полученные результаты могут оказаться полезными при исслөдовании задачи о распаде закрученной струи, решению которой в последние годы уделяется большое внимание [1, 2].

1. Введем цилиндрическую систему координат x, r, φ. Через U, V, W ббозначим осевую, радиальную и азимутальную составляющие скорости, P - статическое давление. Уравнения Эйлера допускают осесимметричное решение вида

$$
\begin{equation*}
U=f_{1}(r), \quad V \equiv 0, \quad W=f_{2}(r), \quad P=-\int_{r}^{\infty} \frac{f_{2}{ }^{2} d r}{r} \tag{1.1}
\end{equation*}
$$

тде f_{1}, f_{2} - произвольные функции [3].
Рассмотрим такие течения, для которых при $x \rightarrow-\infty$ заданы значение циркуляции азимутальной составляющей скорости и величина продольной составляющей потока импульса

$$
\begin{equation*}
\oint_{r} W d \varphi=2 \pi \Gamma_{0}, \quad 2 \pi \int_{0}^{\infty}\left(U^{2}+P\right) r d r=I_{0} \tag{1.2}
\end{equation*}
$$

где Γ_{0}, I_{0} - произвольные постоянные.
Решение (1.1), непрерывное при $r>0$ и удовлетворяющее условиям (1.2), имеет вид

$$
\begin{equation*}
U=\frac{\Gamma_{0}}{\sqrt{2} r}, \quad V \equiv 0, \quad W=\frac{\Gamma_{0}}{r}, \quad p=-\frac{\Gamma_{0}^{2}}{2 r^{2}} \tag{1.3}
\end{equation*}
$$

Решение (1.3) соответствует гидродинамической модели прямолинейной вихревой нити, в которой сосредоточен поток продольного импульса. Вне вихревой нити суммарный поток продольного импульса равен нулю.

Найдем осесимметричное решение уравнений Эйлера, зависящее лишь от одной размерной постоянной Γ_{0} и отличное от цилиндрического решения (1.3), но асимптотически совпадающее с ним при $x \rightarrow-\infty$ и $r=$ const.

Из теории размерностей следует, что искомое решение должно быть автомодельным. В сферической системе координат ρ, θ, φ функцию тока Ψ, составляющие скорости U_{ρ}, U_{θ}, W и величину полной энергии
H представим в виде

$$
\begin{gathered}
\Psi=\Gamma_{0} \rho F(\theta), \quad u_{\rho}=\frac{\Gamma_{0} F^{\prime}(\theta)}{\rho \sin \theta}, \quad u_{\theta}=-\frac{\Gamma_{0} F(\theta)}{\rho \sin \theta} \\
W=\frac{\Gamma_{0} \gamma}{\rho \sin \theta}, \quad H=\frac{\Gamma_{0}{ }^{4} h}{2 \Psi^{2}}
\end{gathered}
$$

где γ, h-свободные безразмерные константы, которые могут принимать различные значения в областях, разделенных поверхностями разрыва.

Фит, 1
Функция F удовлетворяет нелинейному дифференциальному уравнению и граничным условиям

$$
\begin{gather*}
F^{\prime \prime}-F^{\prime} \operatorname{ctg} \theta=-\frac{h \sin ^{2} \theta}{F^{3}} \tag{1.4}\\
F(0)=F(\pi)=0 \tag{1.5}
\end{gather*}
$$

Общее решение уравнения (1.4) имеет вид

$$
\begin{equation*}
F(\theta)= \pm \overline{\gamma^{\prime} A-B \cos \theta-D \cos 2 \theta} \tag{1.6}
\end{equation*}
$$

где свободные постоянные A, B, D связаны с величиной h

$$
8 D(D+A)+B^{2}=4 h .
$$

Легко видеть, что непрерывное решение уравнения (1.4) ($0<\theta<\pi$), удовлетворяющее граничным условиям (1.5), тождественно совцадает с решением (1.3). Поэтому необходимо потребовать, чтобы коэффициенты, входящие в решение (1.6), имели разрыв хотя бы на одной поверхности, которую обозначим через $\theta=\theta_{0}$. Для определенности будем считать, что $\boldsymbol{\theta}_{0}<\pi / 2$, а $\Psi>0$ при $\pi>\theta>\theta_{0}$. Через Ω_{1} обозначим область течения, где $\pi>\theta>\theta_{0}$, а через Ω_{2} - область, где $\theta_{0}>\theta>0$. Коәффициенты, определяющие решение задачи в областях Ω_{1} и Ω_{2}, будем обозначать индексами 1 и 2.

Удовлетворяя граничное условие $F(\pi)=0$ и начальные условия при $x \rightarrow-\infty$ и $r=$ const, долучим окончательный вид решения задачи в области Ω_{1}

$$
\begin{gather*}
\Psi=\Gamma_{0} \rho \sqrt{\frac{\sin ^{2} \theta-B_{1}(1+\cos \theta)^{2}}{2}}, \quad W=\frac{\Gamma_{0}}{\rho \sin \theta} \\
P=-\frac{\Gamma_{0}^{2}}{2 \rho^{2} \sin ^{2} \theta}\left[1-B_{1}(1+\cos \theta)\right] \tag{1.7}
\end{gather*}
$$

Из условия, что в решении (1.7) функция, стоящая под корнем в выражении для Ψ, должна быть ноложительной при $\pi>\theta>\theta_{0}$, следует ограничение на возможные значения постоянной $B_{1}<\operatorname{tg}^{2}\left(\theta_{0} / 2\right)$.

Из граничного условия $F(0)=0$ следует соотношение $A_{2}=B_{2}+D_{2}$. Pe-

шение в области Ω_{2} представляется в виде

$$
\begin{gather*}
\Psi=-\Gamma_{0} \rho \sqrt{2 D_{2} \sin ^{2} \theta+B_{2}(1-\cos \theta)}, \quad W=\frac{\Gamma_{0} \gamma_{2}}{\rho \sin \theta} \\
P=-\frac{\Gamma_{0}{ }^{2}}{2 \rho^{2} \sin ^{2} \theta}\left[\gamma_{2}{ }^{2}+B_{2}(1-\cos \theta)\right] \tag{1.8}
\end{gather*}
$$

Решение (1.7), (1.8) можно рассматривать как предельное решение задачи ($\operatorname{Re}=\Gamma_{0} / v \rightarrow \infty$) о распаде вихревой нити с интенсивностью Γ_{0} и потоком продольного импульса I_{0}. В точке $x=0$ вихревая нить с интенсивностью Γ_{0} расщепляется на вихревую нить с интенсивностью $\Gamma_{0} \gamma_{2}\left(\gamma_{2}<1\right)$ и бесконечно тонкую вихревую коническую поверхность с интенсивностью-$\Gamma_{0}\left(1-\gamma_{2}\right)$. Поверхность $\theta=\theta_{0}$, разделяющая области прямого и возвратного течений жидкости (фиг. 1), является поверхностью стоков, интенсивность которых определяется значением функции тока при $\left|\theta-\theta_{0}\right| \rightarrow 0$.
2. Особый характер поведения решения уравнений Эйлера при $\theta \rightarrow \theta_{0}$. дает основание полагать, что в окрестности конической поверхности $\theta=\theta_{0}$. возникает тонкий слой смешения двух потоков жидкости (область Ω_{3}, фиг. 1), в котором вязкие силы оказывают при $\operatorname{Re} \gg 1$ существенное влияние на характеристики течения. Исследование уравнений движения в слое смешения позволяет получить дополнительные соотношения между свободными коэффициентами $\theta_{0}, \gamma_{2}, B_{1}, B_{2}, D_{2}$, входящими в решение (1.7), (1.8) уравнений Эйлера.

Очевидно, что при $x<0$ п $\operatorname{Re} \gg 1$ вихревая нить с интенсивностью Γ_{0}. имеет собственную вихревую структуру, сформировавшуюся под влиянием сил вязкости (область Ω_{0}). Характерный поперечный размер области Ω_{0} при $x \rightarrow-0$ обозначим через δ_{0}. Естественно считать, что $\delta_{0} \rightarrow 0$ при $\mathrm{Re} \rightarrow \infty$. В соответствии с постановкой задачи поток продольного импульса через поперечное сечение области Ω_{0} есть величина, равная I_{0}. Поэтому порядок величины продольной составляющей скорости и расхода жидкости в области Ω_{0} определяется следующим образом: $U \sim \sqrt{I_{0}} / \delta_{0}, Q \sim \sqrt{I_{0}} \delta_{0}$. В точке $x=0$ область Ω_{0} расслаивается, часть расхода $\Delta Q \sim Q$ и часть продольного импульса $\Delta I \sim I_{0}$ уходят в слой смешения.

Расход жидкости, поступающей в слой смешения из внешнего невязкого потока, согласно решению (1.7); (1.8), есть величина порядка $\Gamma_{0} \rho \sin \theta_{0}$. При $\rho \gg \rho_{0} \sim \overline{I_{0}} \delta_{0} / \Gamma_{0} \sin \theta_{0}$ решение задачи в слое смешения будет в первом приближении автомодельным (область Ω_{3}). При $\rho \gg \rho_{0}$ решение для функции тока может быть представлено в виде

$$
\begin{equation*}
\Psi=\Gamma_{0} \rho\left[\psi_{30}\left(\theta, \operatorname{Re}, \theta_{0}\right)+\Delta\left(\rho_{0} / \rho\right) \psi_{31}\left(\theta, \operatorname{Re}, \theta_{0}\right)\right] \tag{2.1}
\end{equation*}
$$

где $\Delta\left(\rho_{0} / \rho\right) \rightarrow 0$ при $\rho_{0} / \rho \rightarrow 0$.
Если учесть, что на характеристики течения в области Ω_{3} существенное влияние оказывают силы вязкости, а расход жидкости в области Ω_{3} определяется в основном поступлением ее из невязкой области течения, то составляющие скорости и статическое давление, соответствующие первому члену разложения (2.1), можно представить в виде

$$
\begin{gather*}
u_{\rho}=\frac{\Gamma_{0}}{\rho} \operatorname{Re} u_{3}\left(t, \operatorname{Re}, \theta_{0}\right), \quad u_{\theta}=\frac{\Gamma_{0}}{\rho} v_{3}\left(t, \operatorname{Re}, \theta_{0}\right) \\
W=\frac{\Gamma_{0}}{\rho \sin \theta_{0}} w_{3}\left(t, \operatorname{Re}, \theta_{0}\right), \quad P=\frac{\Gamma_{0}{ }^{2}}{2 \rho^{2} \sin ^{2} \theta_{0}} p_{3}\left(t, \operatorname{Re}, \theta_{0}\right) \tag{2.2}\\
t=\left(\theta-\theta_{0}\right) \operatorname{Re}
\end{gather*}
$$

Из уравнений Навье - Стокса следует, что функции $u_{3}, v_{3}, w_{3}, p_{3}$ должкны удовлетворять системе обыкновенных диффферениальных уравнений

$$
u_{s}^{\prime \prime}-v_{s} u_{s}^{\prime}+u_{s}^{2}+\frac{u_{s}^{\prime}}{\operatorname{Retg} \theta_{0}}=O\left(\frac{1}{\operatorname{Re}^{2} \sin ^{2} \theta_{0}}\right)
$$

$$
\begin{gathered}
w_{3}{ }^{\prime \prime}-v_{3} w_{3}{ }^{\prime}+\frac{1}{\operatorname{Retg} \theta_{0}}\left(w_{3}{ }^{\prime}-v_{3} w_{3}\right)=O\left(\frac{1}{\operatorname{Re}^{2} \sin ^{2} \theta_{0}}\right) \\
p_{3}{ }^{\prime}=2 \sin ^{2} \theta_{0}\left(v_{3}{ }^{\prime \prime}+2 u_{3}{ }^{\prime}-v_{3} v_{3}{ }^{\prime}\right)+\frac{2}{\operatorname{Re} \operatorname{tg} \theta_{0}}\left(w_{3}{ }^{2}+v_{3}{ }^{\prime} \sin ^{2} \theta_{0}\right)+O\left(\frac{1}{\operatorname{Re}^{2} \sin ^{2} \theta_{0}}\right) \\
u_{3}+v_{3}{ }^{\prime}+\frac{v_{3}}{\operatorname{Retg} \theta_{0}}=O\left(\frac{1}{\operatorname{Re}^{2} \sin ^{2} \theta_{0}}\right)
\end{gathered}
$$

Граничные условия для искомых функций при $t \rightarrow \pm \infty$ можно получить из условия асимптотического сращивания решения (2.2) с решениями в областях Ω_{1} и Ω_{2}.

Исследование решения уравнений (2.3) необходимо проводить при условии, что $\operatorname{Retg} \theta_{0} \gg 1$, в противном случае области течения Ω_{2} и Ω_{3} становятся асимптотически неразличимыми и задача о распаде вихревой нити вырождается в задачу об определении вязкой структуры прямолинейной вихревой нити. Решение уравнений (2.3) представим в виде асимптотического ряда по степеням малого параметра ($\left.\operatorname{Retg} \theta_{0}\right)^{-1}$

$$
\begin{gather*}
u_{3}=u_{30}+\left(\operatorname{Retg} \theta_{0}\right)^{-1} u_{31}+\ldots, v_{3}=v_{30}+\left(\operatorname{Retg} \theta_{0}\right)^{-1} v_{31}+\ldots \\
w_{3}=w_{30}+\left(\operatorname{Retg} \theta_{0}\right)^{-1} w_{31}+\ldots, p_{3}=p_{30}+\left(\operatorname{Re} \operatorname{tg} \theta_{0}\right)^{-1} p_{31}+\ldots \tag{2.4}
\end{gather*}
$$

Главные члены разложения (2.4) определяются из решения системы уравнений

$$
\begin{gather*}
u_{30}{ }^{\prime \prime}-v_{30} u_{30}{ }^{\prime}+u_{30}{ }^{2}=0, u_{30}+v_{30}{ }^{\prime}=0 \tag{2.5}\\
w_{30}{ }^{\prime \prime}-v_{30} w_{30}{ }^{\prime}=0, p_{30}{ }^{\prime}=2 \sin ^{2} \theta_{0}\left(v_{30}{ }^{\prime \prime}+2 u_{30}{ }^{\prime}-v_{30} v_{30}{ }^{\prime}\right) \tag{2.6}\\
u_{30} \rightarrow 0, \quad v_{30} \rightarrow-\frac{\sqrt{\sin ^{2} \theta_{0}-B_{1}\left(1+\cos \theta_{0}\right)^{2}}}{\sqrt{2} \sin \theta_{0}} \\
w_{30} \rightarrow 1, p_{30} \rightarrow-1+B_{1}\left(1+\cos \theta_{0}\right), t \rightarrow \infty \\
u_{30} \rightarrow 0, \quad v_{30} \rightarrow \frac{\sqrt{2 D_{2} \sin ^{2} \theta_{0}+B_{2}\left(1-\cos \theta_{0}\right)}}{\sin \theta_{0}} \tag{2.7}\\
w_{30} \rightarrow \gamma_{2}, p_{30} \rightarrow-\gamma_{2}{ }^{2}-B_{2}\left(1-\cos \theta_{0}\right), t \rightarrow-\infty \\
v_{30}=0, t=0
\end{gather*}
$$

Из уравнений (2.5) следует, что функция v_{30} удовлетворяет уравнению Риккати

$$
v_{30}{ }^{\prime}-\frac{1}{2} v_{30}{ }^{2}=C_{1} t-\frac{C_{2}{ }^{2}}{2}
$$

Из уравнений и граничных условий для функций v_{30}, p_{30} следует, что

$$
\begin{align*}
C_{1}=0, \sin ^{2} \theta_{0}-B_{1}\left(1+\cos \theta_{0}\right)^{2} & =2\left[2 D_{2} \sin ^{2} \theta_{0}+B_{2}\left(1-\cos \theta_{0}\right)\right] \tag{2.8}\\
1-B_{1}\left(1+\cos \theta_{0}\right) & =\gamma_{2}{ }^{2}+B_{2}\left(1-\cos \theta_{0}\right)
\end{align*}
$$

С учетом соотношений (2.8) решение уравнений (2.5), (2.6), удовлетворяющее граничным условиям (2.7), представляется в виде

$$
\begin{gather*}
u_{30}=\frac{2 C_{2}{ }^{2} e^{\xi}}{\left(1+e^{\xi}\right)^{2}}, \quad v_{30}=\frac{C_{2}\left(1-e^{\xi}\right)}{1+e^{\xi}}, \quad w_{30}=\frac{\gamma_{2}+e^{\xi}}{1+e^{\xi}} \\
p_{30}=-1+B_{1}\left(1+\cos \theta_{0}\right)+2 \sin ^{2} \theta_{0}\left[u_{30}(\xi)+\frac{1}{2}\left(v_{30}{ }^{2}(\infty)-v_{30}^{2}(\xi)\right)\right] \\
\xi=C_{2} t, \quad C_{2}=\sqrt{\frac{\sin ^{2} \theta_{0}-B_{1}\left(1+\cos \theta_{0}\right)^{2}}{2 \sin ^{2} \theta_{0}}} \tag{2.9}
\end{gather*}
$$

Используя решение (2.9), можно определить поток продольного импульса через поперечное сечение слоя смешения

$$
I\left(\Omega_{3}\right)=\frac{1}{\operatorname{Re}} \int_{-\infty}^{\infty} \int_{0}^{2 \pi} u_{\rho}{ }^{2} \rho^{2} \sin \theta_{0} d t d \varphi=\frac{4 \pi C_{2}{ }^{3}}{3} \Gamma_{0}{ }^{2} \operatorname{Re} \sin \theta_{0}
$$

На большом расстоянии $\rho \gg \rho_{0}$ продольная составляющая скорости u_{ρ} в слое смешения определяется в первом приближении величиной потока продольного импульса, источником которого для области Ω_{3} является область Ω_{0}. При этом расход жидкости, подсасываемой через верхнюю границу слоя смешения ($t \rightarrow+\infty$), равен расходу жидкости, подсасываемой через его нижнюю границу ($t \rightarrow-\infty$), а суммарный поперечный перепад давления обращается в ноль. Таким образом, построение первого приближения для решения в слое смешения при $\rho \gg \rho_{0}$ позволило получить два соотношения (2.8), связывающих свободные константы, входящие в решение для внешней невязкой области течения.

Построение второго приближения для составляющих скорости u_{ρ}, u_{θ} позволяет учесть влияние потока продольного импульса, поступающего в область Ω_{3} через внешние границы слоя смешения. Уравнения для функций u_{31}, v_{31} имеют вид

$$
\begin{gather*}
u_{31}{ }^{\prime \prime}-v_{30} u_{31}{ }^{\prime}-v_{31} u_{30}{ }^{\prime}+2 u_{30} u_{31}+u_{30}{ }^{\prime}=0 \tag{2.10}\\
u_{31}+v_{31}+v_{30}=0 \tag{2.11}\\
u_{31} \rightarrow \frac{\left[\cos \theta_{0}+B_{1}\left(1+\cos \theta_{0}\right)\right] \operatorname{tg} \theta_{0}}{\sqrt{2\left(\sin ^{2} \theta_{0}-B_{1}\left(1+\cos \theta_{0}\right)^{2}\right)}}, \quad t \rightarrow+\infty \tag{2.12}\\
u_{31} \rightarrow-\frac{\left(4 D_{2} \cos \theta_{0}+B_{2}\right) \operatorname{tg} \theta_{0}}{2 \sqrt{2 D_{2} \sin ^{2} \theta_{0}+B_{2}\left(1-\cos \theta_{0}\right)}}, \quad t \rightarrow-\infty \\
v_{31}=0, t=0
\end{gather*}
$$

Из (2.10), (2.11) следует уравнение для определения функции v_{31}

$$
\begin{equation*}
\frac{d v_{31}}{d \xi}-\frac{1-e^{\xi}}{1+e^{\xi}} v_{31}=\beta_{0}+\beta_{1} \xi+\frac{2}{1+e^{\xi}} \tag{2.13}
\end{equation*}
$$

Общее решение уравнения (2.13) имеет вид

$$
\begin{equation*}
v_{31}=\frac{e^{\xi}}{\left(1+e^{\xi}\right)^{2}}\left[\beta_{2}+\left(\beta_{0}+\beta_{1} \xi\right)\left(e^{\xi}-e^{-\xi}+2 \xi\right)-\beta_{1}\left(e^{\xi}+e^{-\xi}+\xi^{2}\right)+2\left(\xi-e^{-\xi}\right)\right] \tag{2.14}
\end{equation*}
$$

где $\beta_{0}, \beta_{1}, \beta_{2}$-свободные константы.
Из (2.11), (2.13) следует асимптотический предел для функции u_{31} при $\xi \rightarrow \pm \infty$

$$
\begin{equation*}
u_{31} \rightarrow \pm C_{2}\left(1-\beta_{1}\right), \xi \rightarrow \pm \infty \tag{2.15}
\end{equation*}
$$

Из граничных условий (2.12) и соотношений (2.15) следует условие, связывающее свободные константы, входящие в решение, справедливое во внешней невязкой области течения

$$
\begin{equation*}
\cos \theta_{0}+B_{1}\left(1+\cos \theta_{0}\right)=4 D_{2} \cos \theta_{0}+B_{2} \tag{2.16}
\end{equation*}
$$

Из уравнений (2.8), (2.16) можно найти зависимость коэффициентов B_{1}, B_{2}, D_{2} от γ_{2} пи θ_{0}

$$
\begin{equation*}
4 D_{2}=\gamma_{2}{ }^{2}-\frac{1-\gamma_{2}{ }^{2}}{2} \operatorname{ctg}^{2} \frac{\theta_{0}}{2}, \quad B_{1}=\frac{1-\gamma_{2}{ }^{2}}{2} \operatorname{tg}^{2} \frac{\theta_{0}}{2}, \quad B_{2}=\frac{1-\gamma_{2}{ }^{2}}{2} \operatorname{ctg}^{2} \frac{\theta_{0}}{2} \tag{2.17}
\end{equation*}
$$

С учетом зависимостей (2.17) решение задачи в областях Ω_{1} и Ω_{2} представляется в виде, зависящем от двух параметров θ_{0} и γ_{2}

$$
\begin{gathered}
\Psi=\frac{\Gamma_{0} \rho}{\sqrt{2}} \sqrt{\sin ^{2} \theta-\frac{1-\gamma_{2}{ }^{2}}{2} \operatorname{tg}^{2} \frac{\theta_{0}}{2}(1+\cos \theta)^{2}, \quad W=\frac{\Gamma_{0}}{\rho \sin \theta}} \begin{array}{r}
P=-\frac{\Gamma_{0}{ }^{2}}{2 \rho^{2} \sin ^{2} \theta}\left[1+\frac{\gamma_{2}{ }^{2}-1}{2} \operatorname{tg}^{2} \frac{\theta_{0}}{2}(1+\cos \theta)\right], \quad \pi>\theta>\theta_{0} \\
\Psi=-\frac{\Gamma_{0} \rho}{\sqrt{2}} \sqrt{\gamma_{2}{ }^{2} \sin ^{2} \theta+\frac{1-\gamma_{2}{ }^{2}}{2} \operatorname{ctg}^{2} \frac{\theta_{0}}{2}(1-\cos \theta)^{2}, \quad W=\frac{\Gamma_{0} \gamma_{2}}{\rho \sin \theta}} \\
P=-\frac{\Gamma_{0}{ }^{2}}{2 \rho^{2} \sin ^{2} \theta}\left[\gamma_{2}{ }^{2}+\frac{1-\gamma_{2}{ }^{2}}{2} \operatorname{ctg}^{2} \frac{\theta_{0}}{2}(1-\cos \theta)\right], \quad \theta_{0}>\theta>0
\end{array}, ~
\end{gathered}
$$

Уравнение поверхности тока $\Psi(\rho, \theta)=$ const $= \pm \Psi_{0}$ удобно предста-

Фиг. 2
вить в переменных r, θ

$$
\frac{r}{r_{0}}=\frac{\Gamma_{0} \rho \sin \theta}{\sqrt{2} \Psi}, \quad \theta_{0}<\theta<\pi ; \quad \frac{r}{r_{0}}=-\frac{\Gamma_{0} \rho \sin \theta}{\sqrt{2} \Psi}, \quad \theta_{0}>\theta>0
$$

где $r_{0}=\overline{\sqrt{2}} \Psi_{0} / \Gamma_{0}$ - расстояние поверхности тока от оси симметрии при $\theta \rightarrow \pi$. Образующие поверхности тока для случая $\gamma_{2}=0$ и $\theta_{0}=15,30,60^{\circ}$ представлены на фиг. 2 (кривые 1, 2, 3).

Отношение квадрата интенсивности вихревой нити к величине потока продольного импульса через область Ω_{3} связано с параметрами γ_{2}, θ_{0}, Re соотношением

$$
\begin{equation*}
\frac{\Gamma_{0}{ }^{2}}{I\left(\Omega_{3}\right)}=\frac{6}{\pi\left(1+\gamma_{2}{ }^{2}\right)^{1 / 2}} \frac{1}{\operatorname{Re} \sin \theta_{0}} \tag{2.18}
\end{equation*}
$$

Так как $I\left(\Omega_{3}\right)$ является величиной порядка I_{0}, то из соотношения (2.18) следует, что распад вихревой нити ($\operatorname{Re} \sin \theta_{0} \gg 1$) при больших числах Рейнольдса может возникать, когда относительная интенсивность вихревой нити мала, $\Gamma_{0}^{2} / I_{0} \ll 1$. Для определения механизма распада вихревой нити и зависимости $\theta_{0}=\theta_{0}(\mathrm{Re})$ при $\operatorname{Re} \rightarrow \infty$ необходимо дальнейшее исследование локальной картины течения жидкости на продольных масштабах порядка и меньше ρ_{0}.

ЛИТЕРАТУРА

1. Лейбович C. Распад вихря. // Механика. Новое в зарубежной науке. М.: Мир, 1979. Вып. 21. С. 160-196.
2. Hall M. G. Vortex breakdown // Ann. Rev. Fluid Mech. Palo Alto Calif., 1972. V. 4. P. 195-218.
3. Бэтчелор Дж. Введение в динамику жидкости: Пер. с англ. М.: Мир, 1973. 758 с.
