MEXAHИKA
 ЖИДкОСТИИГАЗА
 № 6 • 1989

УДК 532.526:536.25

АГРАНАТ В. М., МИЛОВАНОВА А. В.

ТЕПЛООБМЕН И ТРЕНИЕ В ПОГРАНИЧНОМ СЈОЕ ПРИ СМЕШАННОЙ КОНВЕКЦИИ НА ГОРИЗОНТАЛЬНОЙ ПЛАСТИНЕ

В настоящее время имеется значительное количество численных исследований ламинарной смешанной конвекции на горизонтальной пластине в условиях приближения Буссинеска и постоянной температуры поверхности (см. библиографию в [1]). Наиболее полными и основополагающими из них являются работы [1-4]. В $[5,6]$ получены аналитические формулы для коэффидиентов трения и теплообмена. Однако, как справедливо отмечается в [4], метод возмущений, используемый в $[5,6]$, не позволяет получить удовлетворительные результаты для области изменения параметра плавучести $\mathrm{Gr}_{x} / \mathrm{Re}_{x}^{5 / 2}$ от 0,1 до 1 , гдө наиболее существенно проявляется взаимное влияние свободной и вынужденной конвекции. В настоящей работе при помощи асимптотического метода [7, 8] получены по аналогии с [9, 10] приближенные формулы для коэффициентов трения и теплообмена при ламинарной смешанной конвекции на горизонтальной пластине в приближении Буссинеска для параметра плавучести $\mathrm{Gr}_{x} / \operatorname{Re}_{x}{ }^{5 / 2} \leqslant 1$ и числа Прапдтля $\operatorname{Pr} \sim 1$ и исследованы критические значения параметра плавучести, при которых происходит «разрушение» пограничного слоя [1] и модель пограничного слоя становится неприменимой.

1. Постановка задачи. Рассмотрим обтекание плоской горизонтальной полубесконечной пластины с постоянной температурой поверхности T_{∞} вязким теплопроводным потоком газа, имеющим вдали от пластины постоянные скорость u_{∞} и температуру T_{∞}. Термогравитационные силы, обусловленные неоднородностью поля темпера́туры, индуцируют продольный градиент давления. Уравнения ламинарной смешанной конвекции на горизонтальной пластине в безразмерном виде имеют вид [1-6]

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{1.1}\\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=\frac{\partial^{2} u}{\partial y^{2}} \pm \frac{\mathrm{Gr}}{\mathrm{Re}^{3 / 2}} \frac{\partial}{\partial x}\left[\int_{y}^{\infty} \theta d y\right] \\
\operatorname{Pr}\left(u \frac{\partial \theta}{\partial x}+v \frac{\partial \theta}{\partial y}\right)=\frac{\partial^{2} \theta}{\partial y^{2}}
\end{gather*}
$$

Здесь $\mathrm{Gr}=g\left(T_{w}-T_{\infty}\right) \beta L^{3} / v^{2}$ - число Грасгофа, $\mathrm{Re}=u_{\infty} L / v$ - число Рейнольдса, $\theta=\left(T-T_{\infty}\right) /\left(T_{w}-T_{\infty}\right)$ - безразмерная температура. Верхний и нижний знаки в уравнении движения относятся $к$ течениям над и под пластиной соответственно.

В качестве характерных значений при обезразмеривании приняты следующие величины: для продольной координаты- L, для поперечной $L / \overline{\mathrm{VRe}}$, для продольной компоненты скорости - u_{∞}, для поперечной $u_{\infty} / \sqrt{\mathrm{Re}}$.

Граничные условия имеют вид

$$
\begin{gather*}
y=0: \quad u=v=0, \quad \theta=1 \tag{1.2}\\
y=\infty: \quad u=1, \quad \theta=0
\end{gather*}
$$

2. Расчет трения и теплообмена. Введем функцию тока $\psi(x, y)$, удовлетворяющую уравнению неразрывности, и новую квазиавтомодельную переменную η, выбор которой должен отражать поведение толщины пограничного слоя.

В связи с этим отметим, что автомодельное решение задачи о смешанной конвекции на горизонтальной пластине может существовать только при определенной связи между изменениями скорости внешнего потока u_{∞} и темшературы стенки T_{w} [4]. Если предположить, что скорость $u_{\infty}(x)$ и температура $T_{w}(x)$ изменяются по степенным законам с показателями m и n соответственно, то для существования автомодельного решения необходимо выполнение следующего соотношения [4]:

$$
n=\frac{5 m-1}{2}
$$

В рассматриваемом случае, когда $T_{w}=$ const и $u_{\infty}=$ const $[1-6]$, т. е. при $n=m=0$, задача не приводится к автомодельной постановке. Поэтому попытаемся при помощи новой переменной η привести задачу к такой постановке, локально-автомодельное решение которой максимально приближено к неавтомодельному.

Заметим, что при выборе $\psi \sim \sqrt{x}$ и $\eta \sim x^{-1 / 2}$ в [1-4] было получено, что в локально-автомодельной постановке член, отвечающий за плавучесть, содержит параметр $\xi=\left|\mathrm{Gr}_{x}\right| / \mathrm{Re}_{x}^{5 / 2}$ порядка \sqrt{x}. С ростом x этот член существенно изменяется, вследствие чего пренебрежение производными по ξ [2] приводит к тому, что расчет трения в локально-автомодельной постановке дает значительную погрешность относительно локально-неавтомодельного решения. Поэтому остановим свой выбор на таких зависимостях ψ п η от x, чтобы, во-первых, было удовлетворено условие $u_{\infty}=$ const, т. е. $\psi \sim x^{1 / 2}[1-4]$, и, во-вторых, член с плавучестью в локально-автомодельной постановке не содержал явной зависимости от x.

Исходя из сказанного выше, введем ψ и η по формулам

$$
\begin{gather*}
\psi(x, y)=A \sqrt{2 x} f(x, \eta), \quad u=\frac{\partial \psi}{\partial y}, \quad v=-\frac{\partial \psi}{\partial x} \tag{2.1}\\
\eta=\frac{A y x^{-3 / 8}}{\sqrt{2}}, \quad A=\left(\frac{3 \sqrt{2}}{4} \frac{\mathrm{Gr}}{\mathrm{Re}^{5 / 2}}\right)^{1 / 5}
\end{gather*}
$$

Тогда уравнения движения и энергии (1.1) и соответствующие им граничные условия (1.2) примут вид

$$
\begin{gather*}
f_{\eta \eta}^{\prime \prime \prime}+x^{-1 / 8} f f_{\eta \eta}^{\prime \prime}=\Phi(x, \eta) \equiv \frac{1}{4} x^{-1 / s}\left(f_{\eta}^{\prime}\right)^{2}+ \\
+2 x^{7 / s}\left(f_{\eta}^{\prime} f_{x n}^{\prime \prime}-f_{x}^{\prime} f_{\eta n}^{\prime \prime}\right) \pm \int_{\eta}^{\infty}\left(\theta_{\eta}^{\prime} \eta-\frac{8}{3} \theta_{x}^{\prime} x\right) d \eta \\
\theta_{\eta \eta}^{\prime \prime}+\operatorname{Pr} x^{-1 / 8} f \theta_{\eta}^{\prime}=2 \operatorname{Pr} x^{1 / s}\left(f_{\eta}^{\prime} \theta_{x}^{\prime}-f_{x}^{\prime} \theta_{\eta}^{\prime}\right) \tag{2.2}\\
\eta=0: \quad f_{\eta}^{\prime}=f=0, \quad \theta=1 \\
\eta=\infty: \quad f_{\eta}^{\prime}=A^{-2} x^{-1 / 8}, \quad \theta=0
\end{gather*}
$$

В уравнении движения (2.2) и ниже верхний знак соответствует первому типу смешанной конвекции, а нижний - второму (силы плавучести соответственно способствуют или препятствуют вынужденной конвекции [2]). Первый случай реализуется при обтекании нагретой ($T_{w}>T_{\infty}$) пла-

стины сверху или холодной ($T_{w}<T_{\infty}$) пластины снизу, а второй - в противоположных ситуациях.

Заметим, что в новых переменных выражение для безразмерной продольной скорости u имеет вид

$$
u=A^{2} x^{1 / 8} f_{n}^{\prime}
$$

и условие $\left.f_{n}{ }_{n}\right|_{n=\infty}=x^{-1 / 8} A^{-2}$ соответствует постоянной скорости внешнего нотока.

Цель дальнейшего анализа - найти в областях $0<\mathrm{Gr}_{x} / \mathrm{Re}_{x}^{5 / 2} \leqslant 1$, $\mathrm{Gr}_{x} / \mathrm{Re}_{x}^{3 / 2}<0$ приближенные аналитические формулы для безразмерных коәффициентов трения и теплообмена $a=f_{\eta n}^{\prime \prime}(x, 0)$ п $b=\theta_{\eta}^{\prime}(x, 0)$, с помощью которых определяются напряжение трения τ_{w} и плотность теплового потока q_{w} на стенке

$$
\begin{gather*}
\tau_{w}=\sqrt{\frac{u_{\infty}^{3} \rho \mu}{2 x^{\prime}}} A^{3} x^{1 / 4} a \tag{2.3}\\
q_{w}=-\lambda\left(T_{\infty}-T_{w}\right) \sqrt{\frac{u_{\infty}}{2 v x^{\prime}}} A x^{1 / s} b
\end{gather*}
$$

где x^{\prime} - расстояние от передней кромки пластины.
Рассмотрим систему (2.2) в локально-автомодельной постановке, т. е. примем, что $f_{x}^{\prime}, f_{\text {тх }}{ }^{\prime \prime}, \theta_{x}^{\prime}$ равны нулю. Из первого уравнения (2.2) и граничных условий, следуя [7-10], получим интегральное соотношение

$$
\begin{gather*}
\int_{0}^{\infty} \exp \left(-\frac{x^{-1 / s} a \eta^{3}}{6}-\frac{x^{-1 / s} \Phi(x, 0) \eta^{4}}{24}-\ldots\right)(a+\Phi(x, 0) \eta+ \\
\left.+\Phi_{\eta}{ }^{\prime}(x, 0) \frac{\eta^{2}}{2}+\ldots\right) d \eta=A^{-2} x^{-1 / 5} \tag{2.4}
\end{gather*}
$$

Используя [7], выразим из второго уравнения (2.2) величину $\Phi(x, 0)$ в первом приближении

$$
\Phi(x, 0) \equiv \pm \int_{0}^{\infty} \theta_{\eta}{ }^{\prime} \eta d \eta \simeq \mp \frac{1}{2} \frac{\Gamma(5 / 3)}{\Gamma(4 / 3)}\left(\frac{\operatorname{Pr} x^{-1 / s} a}{6}\right)^{-1 / s}
$$

где $\Gamma(x)$ - гамма-функция.
Подставляя $\Phi(x, 0)$ в (2.4) и ограничиваясь двумя членами разложения, приходим к уравнению пятой степени

$$
\begin{gather*}
z^{5}-z^{3}=C \xi \operatorname{Pr}^{-1 / 2}=\alpha, \quad z=\left(\frac{a}{a_{0}}\right)^{1 / 2} \\
a_{0} \simeq A^{-3} x^{-1 / 4}\left[6 \Gamma^{3}\left(\frac{4}{3}\right)\right]^{-1 / 2}, \quad C= \pm \frac{3^{5 / 2}}{4} \Gamma^{2}\left(\frac{5}{3}\right) \Gamma^{1 / 2}\left(\frac{4}{3}\right) \approx \pm 3,0009 \tag{2.5}
\end{gather*}
$$

Здесь a_{0} - значение a при $\xi=0$, т. е. a_{0} соответствует напряжению трения $\tau_{w 0}$ для вынужденной конвекции несжимаемого газа на горизонтальной пластине [11, 12].

Уравнение (2.5) связывает неизвестную величину z, характеризующую относительное изменение напряжения трения в пограничном слое вследствие наличия естественной конвекции, с определяющим безразмерным параметром α. Для качественного анализа решений полученного алгебраического уравнения рассмотрим представленный на фигуре график функции $\alpha=\alpha(z) \equiv z^{5}-z^{3}$ для $z>0$. На графике точка $N=(1,0)$ соответствует случаю чисто вынvжденной конвекции ($a=a_{9}$). Смешанной конвекции первого

тйпа ($C>0$) отвечают положительные α и, следовательно, участок кривой $N M$, где значения $z>1\left(a>a_{0}\right)$. Принимая во внимание (2.3), получаем, что смешанная конвекция первого типа приводит к росту напряжения трения по сравнению с вынужденной конвекцией.

Двигаясь по участку $N K$ кривой $\alpha=\alpha(z)$ от точки N в сторону отрицательных α, попадаем в область смешанной конвекции второго типа ($C<0$), которой соответствуют значения $z<1$. Следовательно, напряжение трения при смешанной конвекции второго типа меньше, чем при вынужденной. С уменьшением α от 0 до $\alpha *$ коэффициент трения изменяется от a_{0} до некоторого отличного от нуля значения $a_{*}=a_{0} z_{*}{ }^{3}$, причем при приближении к критической точке $K=\left(z *, \alpha_{*}\right)$ величина $d \alpha / d z \rightarrow+0$, а $d z / d \alpha \rightarrow \infty$, т. е.. $a_{\xi}^{\prime} \rightarrow-\infty$, так как $\operatorname{sign} \alpha=-\operatorname{sign} \xi$.

Как указывается в [1], такое резкое исчезновение трения на стенке при $\xi \rightarrow \xi *$ приводит к неограниченному росту толщины пограничного слоя и к его разрушению. В предотрыв-
 ной области $x \leqslant x *$, соответствующей значениям ξ, близким к $\xi *$, происходит нарушение условий применимости уравнений (1:1) пограничного слоя [11]. Участок $K O$ кривой на фигуре, соответствующий отрезку $[0, z *]$, физически нереальный, так как на нем при $C<0$ с ростом ξ величина a растет, а не убывает. При сверхкритических значениях параметра $\alpha<\alpha_{*}=\alpha\left(z_{*}\right)$, как видно из фигуры, уравнение (2.5) не имеет положительных корней. Это свидетельствует о неприменимости модели пограничного слоя при $\alpha<\alpha$. Значение $\alpha_{*}=\alpha\left(z_{*}\right)$ является бифуркационным и находится из условия $d \alpha / d z=0$ при $z=z *$. При $\alpha_{*}<\alpha<0$ необходимо учитывать неединственность решений уравнения (2.5), которая, по-видимому, связана с описанными в [2] сложностями численного решения задачи в указанной области. Все выводы, полученные из проведенного качественного анализа кривой (2.5), согласуются с известными теоретическими результатами [1-6]. Поэтому обратимся к количественному анализу этого уравнения.

Поскольку аналитически точно найти корни уравнения пятой степени (2.5) не удается, в соответствии с [2, 4] предположим, что $|z-1| \ll 1$ для $\xi \leqslant 1$, и перейдем от (2.5) к биквадратному уравнению относительно $\left(a / a_{0}\right)^{1 / 3}$, которое при $\xi \operatorname{Pr}^{-1 / 3} C>-1 / 4$ имеет единственный положительный корень. Этому корню соответствует значение

$$
\begin{equation*}
\frac{a}{a_{0}} \simeq\left[\frac{1}{2}\left(1+\sqrt{\left.1+4 C \xi \operatorname{Pr}^{-1 / 8}\right)}\right]^{1 / 2}, \quad C \simeq \pm 3,0009\right. \tag{2.6}
\end{equation*}
$$

Следует отметить, что для $C>0$ всегда существует решение (2.6), а для отрицательного C (для смешанной конвекции второго типа) при $\xi>\xi_{*}$ формула (2.6) приводит к комплексным значениям a. При этом

$$
\begin{equation*}
\xi_{*}=\frac{1}{4} \operatorname{Pr}^{1 / 2}|C|^{-1} \simeq \frac{1}{12} \operatorname{Pr}^{1 / 2} \tag{2.7}
\end{equation*}
$$

Критическое значение $\xi=\xi_{*}$ соответствует точке, при достижении которой модель пограничного слоя становится непригодной.

Сравнение формулы (2.6) с результатами локально-неавтомодельного решения [2] при $\operatorname{Pr}=0,7$ дает погрешность до 3% для $\mathrm{Gr}_{x} / \mathrm{Re}_{x}^{5 / 2} \in$ モ $[-0,03,1]$ (для всей области, исследованной в [2]). Следует заметить,

что параметр плавучести входит в формулу (2.6) только с сомножителем $\mathrm{Pr}^{-1 / 3}$. Таким образом, увеличение числа Прандтля приводит к снижению влияния архимедовой силы на коэффициент трения, что подтверждается результатами работ [1, 3-6].

Сопоставление значения $\xi *$ вычисленного по формуле (2.7), с численными результатами работы [1] дает погрешность менее 5% для чисел $\operatorname{Pr}=0,5-10$.

Для того чтобы найти безразмерный коэффициент теплообмена b, обратимся к уравнению для безразмерной температуры (2.2). Следуя [7-10], с учетом двух первых членов асимптотического разложения получим соотношение

$$
-b^{-1}=\int_{0}^{\infty} \exp \left(-\frac{\operatorname{Pr} x^{-1 / s} a \eta^{3}}{6}\right)\left(1-\frac{\operatorname{Pr} \Phi(x, 0) x^{-1 / 8} \eta^{4}}{24}\right) d \eta
$$

из которого вытекает формула

$$
\begin{equation*}
\left(\frac{b}{b_{0}}\right)^{-1}=\left(\frac{a}{a_{0}}\right)^{-1 / 3} \pm 0,5002\left(\frac{a}{a_{0}}\right)^{-2} \xi \operatorname{Pr}^{-2 / 3}, \quad b_{0}=-x^{-1 / 8} A^{-1} \operatorname{Pr}^{1 / 3}\left[6 \Gamma^{3}\left(\frac{4}{2}\right)\right]_{(2.8)}^{-1 / 2} \tag{2.8}
\end{equation*}
$$

Здесь b_{0} соответствует тепловому потоку $q_{w 0}$ при $\xi=0$, т. е. случаю вынужденной конвекции несжимаемого газа на горизонтальной пластине [11, 12]. Полученная формула дает совпадение до $4,5 \%$ с численными результатами работы [2] во всем диапазоне $\mathrm{Gr}_{x} / \mathrm{Re}_{x}^{5 / 2}$, исследованном в [2]. Для различных чисел Прандтля проводилось сравнение (2.8) с численными данными [4] в точках $\xi=1,10$. Анализ показал, что для $\operatorname{Pr}=0,7$ п 1 погрешность формулы менее $3,5 \%$, а для $\operatorname{Pr}=10$ она возрастает до 8%

Необходимо отметить, что использование метода [7] для решения задачи (1.1) в локально-автомодельной постановке при выборе $\psi \sim \sqrt{x}$ и $\eta \sim x^{-1 / 2}$ дает удовлетворительную точность (до 6%) по сравнению с численным локально-автомодельным решением [2], но приводит к значительному отклонению от локально-неавтомодельного решения [2]. Таким образом, хорошее совпадение локально-автомодельного решения (2.6) и (2.8) с ло-кально-неавтомодельным [2] является следствием удачного выбора (2.1) квазиавтомодельной переменной $\eta \sim x^{-3 / 8}$. Поэтому можно предположить, что при ламинарной смешанной конвекции на горизонтальной пластине при $u_{\infty}=$ const и $T_{w}=$ const толщина динамического пограничного слоя $\delta \sim x^{3 / 8}$. Если для сравнения взять автомодельные постановки при вынужденной конвекции на горизонтальной пластине, при свободной конвекции на вертикальной пластине [12] и при смешанной конвекции на горизонтальной пластине для $T_{w}=$ const пи $u_{\infty} \sim x^{1 / s}$ [13], то в этих случаях толщина пограничного слоя будет соответственно порядка $x^{1 / 2}$, $x^{1 / 4}$ и $x^{2 / 5}$. Видно, что зависимость $\delta \sim x^{3 / 8}$ наиболее близка к закону $\delta \sim x^{2 / 5}$.

Полученные в работе формулы можно рекомендовать для расчета ламинарной смешанной конвекции на изотермической горизонтальной пластине в широких диапазонах изменения параметра плавучести и числа Прандтля.

ЛИТЕРАТУРА

1. Schneider W., Wasel M. G. Breakdown of the boundary-layer approximation for mixed convection above a horizontal plate // Int. J. Heat and Mass Transfer. 1985. V. 28. 응 12. P. 2307-2313.
2. Чжәнь, Спэрроу, Мукоглу. Смешанная конвекция в пограничном слое на горизовтальной пластине // Теплопередача. 1977. № 1. С. 70-76.
3. Рамачандран, Армали, Чжзнь. Смешанная конвекция около горизонтальной пластины // Теплопередача. 1983. 끄. 2. С. 177-180.
4. Мартыненко О. Г., Соковишин Ю. А. Теплообмен смешаннной конвекцией. Минск: Наука и техника, 1975. 255 с.
5. Sparrow E. M., Minkowycz W. J. Buoyancy effects on horizontal boundary-layer flow and heat transfer // Int. J. Heat and Mass Transfer. 1962. V. 5. № 6. P. 505511.
6. Hieber C. A. Mixed convection above a heated horizontal surface //Int. J. Heat and Mass Transfer. 1973. V. 16. № 4. P. 769-785.
7. Meksyn D. New methods in laminar boundary layer theory. Oxford: Pergamon press, 1961. 294 p.
8. Тирский $Г . А$. Сублимация тупого тела в окрестности критической точки в плоском и осесимметричном потоке смеси газов // Журн. вычисл. математики и мат. физики. 1961. Т. 1. № 5. С. 884-902.
9. Агранат B. М. Об аналогии Рейнольдса в запыленном ламинарном пограничном слое // Изв. АН СССР. МЖГ. 1986. № 6. С. 160-162.
10. Агранат B. М. Влияние градиента давления на трение и теплообмен в запыленном пограничном слое // Изв. АН СССР. МЖГ. 1988. № 5. С. 105-108.
11. Лойчянский Л. Г. Механика жидкости и газа. М.: Наука, 1987. 840 с.
12. Шлихтинг Γ^{\prime}. Теория пограничного слоя. М.: Наука, 1974. 711 е.
13. Redekopp L. G., Charwat A. F. Role of buoyancy and the Boussinesq approximation in horizontal boundary layers // J. Hydronaut. 1972. V. 6. № 1. P. 34-39.

Tomek

