МАКАРОВ С. Н., СЕМЕНОВА Н. Г., СМИРНОВ В. Е.

МОДЕЛЬ АКУСТИЧЕСКОГО ТЕЧЕНИЯ ДЛЯ ИНТЕНСИВНОГО ЗВУКОВОГО ПУЧКА В СВОБОДНОМ ПРОСТРАНСТВЕ

Под стационарным акустическим течением в свободном пространстве понимают постоянное движение жидкости или газа, возникающее в поле звукового луча и направленное от источника звука. Течения такого рода исгользуются в ряде технологических процессов [1], в частности при конструировании акустических насосов $[2,3]$. Экспериментально наблюдаемая скорость течения в воде не превышает нескольких м/с, в воздухе - десятков м/с [3].

В отличие от эккартовских (одномерных потоков в трубе) акустические течения в свободном пространстве теоретически изучены менее подробно. В работе [4] сформулированы общие уравнения потока, подобные уравнениям Прандтля для пограничного слоя. Модельное решение для плоского пучка получено в [5]. Медленное течение при $\mathrm{Re}<1$ исследовалось в работе [6]. В реальных условиях интенсивные потоки характеризуются существенно большими значениями гидродинамического числа Рейнольдса $\mathrm{Re} \gtrsim 100$.

Ниже рассмотрено стационарное акустическое течение в жидкой баротропной среде (воде), возбуждаемое плоским круглым излучателем на частотах мегагерцевого диапазона, при больших гидродинамических числах Рейнольдса. Исследована область течения, меньшая дифракционной длины, но включающая зону образования разрыва и нелинейного затухания пилообразной волны конечной амплитуды.

Экспериментально установлено, что в данных условиях прямое течение практически не выходит за границу пучка. Подтекание жидкости в основной поток щроисходит в каждой точке боковой поверхности пучка [7], исключая, может быть, область вблизи излучателя, где звуковое поле существенно неоднородно [8]. Эта область ниже не рассматривается.

Считаем также, что акустическое течение не изменяет параметров звуковой волны внутри џучка. Воздействие постоянного течения на звуковое поле связано в основном с увеग़ичением скорости звука в движущейся среде [9]. Для воды оно составляет менее $0,1 \%$ и, следовательно, пренебрежимо мало.

1. Пусть ρ, p, v - мгновенные значения плотности, давления и колебательной скорости внутри пучка в отсутствие потока, ρ_{0}, p_{0}, c_{0} - равновесные значения параметров жидкости. Элементарный объем жидкости совершает периодические колебательные движения в звуковом поле и одновременно движется поступательно вдоль линии тока акустического течения со скоростью W. Выпишем интеграл механической энергии (интеграл Бернулли) для поступательных движений.

В поле плоского звукового пучка, распространяющегося в направлении оси x, на жидкость действует объемная сила \mathbf{F} вида $[6,10]$

$$
\begin{equation*}
F_{x}=-\rho_{0} \frac{d\left\langle v^{2}\right\rangle}{d x}>0, \quad r<R, \quad F_{x}=0, \quad r>R, \quad F_{r}=0 \tag{1.1}
\end{equation*}
$$

где r-радиальная координата, R - радиус пучка. Во внутренней области пучка сила \mathbf{F} (1.1) имеет потенциал $\varphi=\rho_{0}\left\langle v^{2}\right\rangle$.

Потенциал объемного действия сил давления равеп среднему значению функции давления P [11] в звуковом поле. Разлагая давление в ряд Тэйлора около равновесного значения p_{0} и преобразуя нелинейное слагаемое с помощью равенства $p-p_{0}=\rho_{0} c_{0} v$, находим

$$
\begin{equation*}
\langle P\rangle=\left\langle p-p_{0}\right\rangle / \rho_{0}-1 / 2\left\langle v^{2}\right\rangle \tag{1.2}
\end{equation*}
$$

В соответствии с условием «поджатия» (см. [10, 12]) среднее от избыточного гидростатического давления $\left\langle p-p_{0}\right\rangle$ для ограниченной по сечению волны равно нулю.

Зафиксируем сечение пучка с координатой x и рассмотрим линию тока акустического течения, проходящую через его центр (кривая 1 на фиг. 1). Линия тока 1 пересекает боковую поверхность пучка в непосредственной

Фиг. 1
близости от излучателя, а скорость течения на ней $W(x)$ максимальна по сечению. Интеграл Бернулли вдоль линии тока имеет вид

$$
\begin{equation*}
1 / 2 W^{2}+\langle P\rangle+\varphi / \rho_{0}=\text { const } \tag{1.3}
\end{equation*}
$$

Выберем на линии тока 1 точку a вблизи ее пересечения с боковой поверхностью пучка и будем считать, что $\left|\mathbf{W}_{a}\right| \ll W(x)$. Подставляя в (1.3) значения $\langle P\rangle(1.2)$ и φ и определяя постоянную, получим

$$
\begin{equation*}
W^{2}=\left\langle v^{2}(0)\right\rangle-\left\langle v^{2}(x)\right\rangle \tag{1.4}
\end{equation*}
$$

Формула (1.4) задает максимальную скорость акустического течения в сечении x при $r=0$. На оси пучка и только на ней сумма динамического давления акустического потока $\rho_{0} W^{2}$ и радиационного давления звука $\rho_{0}\left\langle v^{2}(x)\right\rangle$ [10] остается постоянной. Этот результат соответствует известной теореме Боргниса [13].
2. Определим скорость затекания жидкости в звуковой пучок и профиль акустического течения. Обозначим $V_{n}(x)$ нормальную компоненту скорости течения на боковой поверхности пучка и рассмятрим «трубку тока», входящую в пучок вблизи точки ξ с сечением на боковой поверхности $2 \pi R d \xi$ (фиг. 1). Вновь используя схему рассуждений разд. 1, находим, что скорость в трубке тока в сечении $x W(x, \xi)$ будет равна

$$
\begin{equation*}
W^{2}=\left\langle v^{2}(\xi)\right\rangle-\left\langle v^{2}(x)\right\rangle \tag{2.1}
\end{equation*}
$$

а площадь $d S$, занятая трубкой тока в сечении x, определяется равенством $W d S=V_{n}(\xi) 2 \pi R d \xi$. Разделив на W и проинтегрировав по ξ в пределах $0, x$, получим

$$
\begin{equation*}
R=2 \int_{0}^{x} \frac{V_{n}(\xi)}{W(x, \xi)} d \xi \tag{2.2}
\end{equation*}
$$

Решая интегральное уравнение (2.2) с учетом (2.1), находим скорость затекания как функцию расстояния от источника

$$
\begin{equation*}
V_{n}(x)=-\frac{R}{2 \pi \sqrt{\left\langle v^{2}(0)\right\rangle-\left\langle v^{2}(x)\right\rangle}} \frac{d\left\langle v^{2}\right\rangle}{d x} \tag{2.3}
\end{equation*}
$$

Из (2.3) следует, что скорость затекания жидкости в пучок неравномерна и определяется в основном градиентом величины $\left\langle v^{2}\right\rangle$.

Профиль акустического течения $V_{a}(r, x)$ находится из решения ин-

тегрального уравнения

$$
\begin{equation*}
\int_{0}^{r} V_{a} r_{1} d r_{1}=R \int_{0}^{x} V_{n}(\xi) d \xi \tag{2.4}
\end{equation*}
$$

где $\chi(r, x)$ - размер зоны, через которую жидкость поступает в круг радиуса r в сечении x (фиг. 1). Если в левой части (2.2) заменить R на r, χ будет верхним пределом интеграла правой части. Взяв значение V_{n} из (2.3), получим неявное решение $\left\langle v^{2}(0)\right\rangle-\left\langle v^{2}(\chi)\right\rangle=\left(\left\langle v^{2}(0)\right\rangle-\left\langle v^{2}(x)\right\rangle\right) \times$ $\times \sin ^{2}\left({ }^{1} / 2 \pi(r / R)^{2}\right)$. Подставляя результат в (2.4), находим

$$
\begin{equation*}
\left.V_{a}=\sqrt{\left\langle v^{2}(0)\right\rangle-\left\langle v^{2}(x)\right.}\right\rangle \cos \left(1 / 2 \pi(r / R)^{2}\right) \tag{2.5}
\end{equation*}
$$

Профиль акустического течения (2.5) имеет платообразный характер и отличается от профиля эккартовского течения в круглой трубе [10]. При $r=0$ из (2.5) следует (1.4).
3. Сравним полученное решение с данными по измерению скорости интенсивного акустического течения в воде. Полагая $c_{0}=1,5 \cdot 10^{3} \mathrm{~m} / \mathrm{c}, \rho_{0}=$ $=10^{3} \mathrm{\kappa г} / \mathrm{m}^{3}, \gamma=7$, перепишем (1.4) в виде

$$
\begin{equation*}
V_{a}^{*}=47 p_{a} \sqrt{\frac{\tau_{i}}{\tau_{f}}} \sqrt{1-E(x)}, \quad p_{a}=0,173 \sqrt{I} \tag{3.1}
\end{equation*}
$$

где $V_{a}{ }^{*}$ - максимальная скорость течения в см/с, p_{a} - амплитуда звукового давления на излучателе в мегапаскалях, x - расстояние до излучателя в см, I - интенсивность звука у излучателя в Вт/см²; τ_{i}, τ_{i} - длительность импульса и период следования для импульсного режима нзлучения. Величина E (удвоенное среднее квадрата безразмерной колебательной скорости) определяется из решения уравнения Бюргерса [14]

$$
\begin{gather*}
E(x)=2\left\langle V^{2}(z)\right\rangle ; V_{z}-V V_{\theta}-\Gamma V_{\theta 0}=0 \\
V(z=0)=\sin \theta ; z=f p_{a} x / 13,4, \Gamma=3,4 \cdot 10^{-3} f / p_{a} \tag{3.2}
\end{gather*}
$$

Здесь f - частота излучения в МГц, z - безразмерное расстояние, значение Γ вычислено для коэффициента поглощения воды $\alpha / f^{2}=25 \cdot 10^{-15} \mathrm{c}^{2} \mathrm{~m}^{-1}$.

Величина $E(x)$ определялась численным интегрированием краевой задачи (3.2) спектральным методом [15] с погрешностью не более $0,5 \%$.

На фиг. 2 приведены экспериментальные данные для скорости акустического потока на расстоянии 40 см от излучателя, работающего в непрерывном режиме на частоте $f=1,2$ МГц [7] (в [7] допущена неточность: масштаб по оси абсцисс на фиг. 4, как следует из текста, необходимо уменьшить в 2 раза). Теоретическая кривая 1, рассчитанная по формуле (3.1), хорошо соответствует экспериментальным точкам в области $p_{a} \gtrsim$ $\geqslant 0,45$ МПа, где основную роль в уменьшении величины E играет нелинейное поглощение пилообразной волны. Заметим, что скачок в гармонической на входе волне в точке наблюдения образуется при $p_{a} \approx 0,3 \mathrm{M}$ Ма. Расхождение в области $p_{a} \leqslant 0,45$ МПа связано скорее всего с избыточным малоамплитудным поглощением за счет присутствия в жидкости визуализирующих частиц, пузырьков воздуха ит.д. Расчет по формуле Лэмба [1] показывает, что при наличии в 1 см 3 воды 10 частиц с плотностью $\rho=\rho_{0}$ и радиусом 0,15 мм коәффициент поглощения первой гармоники возрастает в 1,4 раза, второй - в 2,5 раза, а третьей - более чем в 4 раза. Кривая 2 на фиг. 2 рассчитана для среднего коэффициента поглощения, превышающего нормальный в 2,5 раза. Отклонение от экспериментальных данных во всей области измерений составляет при этом не более 25%.

На фиг. 3 приведены значения максимальной скорости течения на расстоянии 37 см от того же излучателя, работающего в импульсном режиме

с $\tau_{i}=3$ мс, $\tau_{f}=20$ мс, $f=1,2$ МГц [7]. По оси абсцисс отложена интенсивность волны у экрана из звукопрозрачной пленки, помещенного на расстоянии 17 см от излучателя. В данном эксперименте звуковая волна за экраном всегда имеет пилообразную

Фиг. 2 форму. Для расчета течения за экраном единицу в подкоренном выражении (3.1) следует заменить на $E(x=17)$. Теоретическая кривая 1 для $\gamma=7$ описывает экспериментальные данные с погрешностью $\leqslant 40 \%$, кривая 2 , рассчитанная для $\gamma=6,1,-$ с погрешностью $\lesssim 30 \%$.

На фиг. 4 изображен профиль акустического течения на расстоянии 50 см от излучателя ($f=1,1$ МГц), найденный экспериментально по методике, описанной в [8], и рассчитанный по формуле (2.5) (кривая 1). Погрешность в обла-

сти $r \leqslant 1 / 2 R$ не превышает 7%.
Таким образом, предложенная модель интенсивного акустического течения в свободном пространстве удовлетворительно описывает имеющиеся экспериментальные данные. Одновременно она определяет местную скорость затекания жидкости в область звукового пучка (формула 2.3) и суммарный расход в произвольном сечении пучка. Этого достаточно, чтобы рассчитать оптимальную конструкцию акустического насоса, работающего в жидкой среде.

ЛИТЕРАТУРА

1. Бергман Л. Ультразвук и его применение в науке и технике: Пер. с нем. М.: Изд-во иностр. лит., 1957. 726 с.
2. Dauphinee T. M. Acoustic air pump // Rev. Sci. Instrum. 1957, V. 28. № 6. P. 452.
3. Медников Е. П., Новицкий Б. Г. Экспериментальное исследование мощного звукового ветра // Акуст. журн. 1975. Т. 21. Вып. 2. С. 245-249.
4. Гусев В. Э., Руденко О. В. Нестационарные квазиодномерные акустические течения в неограниченных объемах с учетом гидродинамической нелинейности // Акуст. журн. 1979. Т. 25. Вып. 6. С. 875-881.
5. Островский Л. А., Папилова И. А. О нелинейном акустическом ветре // Акуст. журн. 1974. Т. 20. Вып. 1. С. 79-86.
6. Lighthill J. Acoustic streaming // J. Sound and Vibr. 1978. V. 61. № 33. P. 391-418.
7. Романенко E. B. Экспериментальное исследование акустических потоков в воде // Акуст. журн. 1960. Т. 6. Вып. 1. С. 92-95.
8. Семенова Н. Г. Экспериментальное исследование некоторых случаев акустических течений: Автореф. дис. ...канд. физ.-мат. наук: 01.02.05. М., 1969. 17 с.
9. Бахвалов Н. С., Жилейкин Я. М., Заболотскал Е. А. Нелинейная теория звуковых пучков. М.: Наука, 1982. 174 с.
10. Зарембо Л. К., Красильников В. А. Введение в нелинейную акустику. Звуковые и ультразвуковые волны большой интенсивности. М.: Наука, 1966. 519 с.
11. Лойчянский Л. Г. Механика жидкости и газа. М.: Наука, 1987. 840 с.
12. Ландау Л. Д., Лифшиц Е. М. Гидродинамика. М.: Наука, 1986. 736 с.
13. Borgnis F. E. On the forced due to acoustic wave motion in a viscous medium and their use in the measurement of acoustic intensity // J. Acoust. Soc. Amer. 1953. V. 25. № 3. P. 546-548.
14. Васильева О. А., Карабутов А. А., Лапшин Е. А., Руденко О. В. Взаимодействиө, одномерных волн в средах без дисперсии. М.: Изд-во МГУ, 1983. 152 с.
15. Макаров С. Н., Хамзина Б. С. Численный расчет эволюции интенсивных имт пульсов в газодинамическом приближении // Вестн. ЛГУ. Сер. 1. 1987. Вып. 3, C. 108-111.

Ленинград

