```
MEXAHИКА
ЖИДКОСТИИГАЗА
No 5 • 1986
```


УДК 532.5.031:519.63

ИССЛЕДОВАНИЕ ЭВОЛЮЦИИ СВОБОДНЫХ ГРАНИЦ ПРИ НЕСТАЦИОНАРНОМ ДВИЖЕНИИ ТЕЛ В ИДЕАЛЬНОИ НЕСЖИМАЕМОЙ ЖИДКОСТИ МЕТОДАМИ КОНЕЧНЫХ И ГРАНИЧНЫХ ЭЛЕМЕНТОВ

АФАНАСЬЕВ К. Е., АФАНАСЬЕВА М. М., ТЕРЕНТЬЕВ А. Г.

Abstract

Исследование неустановившегося движения жидкости со свободными поверхностями - одна из наиболее сложных задач гидродинамики, и точное решение удается получить лишь при дополнительных упрощающих предположениях. В связи с интөнсивным развитием численных методов появилась возможность численного анализа таких задач.

В настоящей работе методами конечных и граничных элементов исследуется нестационарное движкение тел в идеальной несжимаемой жидкости вблизи свободной поверхности над плоским дном. Применяемые методы базируются на двух различных принципах, поэтому сравнение численных результатов позволяет с некоторой достоверностью судить об их эффективности и точности. Описание этих методов можно найти в [1, 2]. Показано, что при импульсивном движении твердого тела из состояния покоя эволюция свободной поверхности аналогична одному из любопытных явлений в гидродинамике, называемому «султаном». На возможность моделирования султана с помощью вертикального импульсивного движения тела указывалось в [3].

1. Постановка задачи и метод решения. Пусть в неподвижной системе координат x, y занятая жидкостью область $\Omega(t)$ ограничена деформируемой свободной границей Γ_{1}, неподвижной твердой границей Γ_{2} и подвижной границей тела Γ_{3}. Рассматривается движение по горизонтальному дну некоторого выступа и вертикальное движение симметричного плоского или осесимметричного тела.

Предполагается, что сначала тело и жидкость находятся в покое, затем в момент времени $t=0$ тело приобретает ненулевую начальную скорость \mathbf{v}_{0} и движется с произвольной ограниченной скоростью $\mathbf{v}(t)$. Задача решается с учетом весомости. На свободной границе Γ_{1} давление $p=$ $=$ const, на твердых границах Γ_{2} и Γ_{3} выполняется условие непротекания.

Гидродинамическая задача сводится к решению уравнения Лапласа для потенциала скорости, удовлетворяющего на границах области динамическому и кинематическим условиям

$$
\begin{gather*}
\Delta \varphi=0, \quad \mathbf{x}=(x, y) \in \Omega(t) \tag{1.1}\\
\frac{d \varphi}{d t}-\frac{1}{2}(\nabla \varphi)^{2}+g y=0, \quad \mathbf{x} \in \Gamma_{1} \tag{1.2}\\
\mathbf{v}_{1}=\nabla \varphi\left(\mathbf{x} \in \Gamma_{1}\right), \varphi_{n}=0 \quad\left(\mathbf{x} \in \Gamma_{2}\right), \varphi_{n}=\mathbf{v}(t) \cdot \mathbf{n}\left(\mathbf{x} \in \Gamma_{3}\right) \tag{1.3}
\end{gather*}
$$

где \mathbf{v}_{1} - вектор скорости частицы жидкости на свободной границе.
Кроме того, задается поведение функции на бесконечности ($\varphi \rightarrow 0$, $x \rightarrow \infty$) и начальное распределение потенциала на свободной границе $\left(\varphi(\mathbf{x}, 0)=0, \mathbf{x} \in \Gamma_{1}\right)$.

Исходная краевая задача (1.1)-(1.3) нелинейна из-за условия (1.2).

Кроме того, свободная граница Γ_{1} неизвестна, что затрудняет непосредственное применение численных методов. Для решения поставленной задачи можно воспользоваться методом последовательного нахождения границы Γ_{1} и значения потенциала φ по заданным приращениям Δt [4]. Аналогичный подход был успешно применен в [5, 6]. Суть метода заключается в следующем: по заданным в некоторыї момент времени t, положению границы Γ_{1} и значению на ней потенциала φ и градиента $\Gamma \varphi$, из первого условия (1.3) определяется вектор перемещения $\mathbf{v}_{1} \Delta t$ и, следовательно, новое положение свободной границы Γ_{1}, а из условия (1.2) новое значение потенциала для момента времени $t=t+\Delta t$.

Таким образом, нелинейная краевая задача в каждый момент времени заменяется линейной смешанной краевой задачей с условиями Неймана на твердых границах и условием Дирихле на свободной границе.
2. Метод конечных элементов. Область течения $\Omega(t)$ приннмается конечвой и разбивается на N линейных четырехугольных изопараметрических элементов Ω_{l}

$$
\Omega=\bigcup_{i=1}^{N} \Omega_{l}, \quad \Omega_{\alpha}=\bigcap_{\alpha, \beta=1}^{N} \Omega_{\beta}=\phi \quad(\alpha \neq \beta)
$$

Каждый элемент Ω_{l} отображается на стандартный квадратный элемеит $E\{x=x(\xi, \eta), y=y(\xi, \eta), \xi, \eta \in[-1,1]\}$. Нетрудно показать [7], что для всех элементов Ω_{l}, когда их углы отличны от 0 и л, якобиан преобразования $J(\xi, \eta)$ отличеп от нуля. Если на каждом элементе к уравнению (1.1) применить метод Галеркина, то получится система уравнений

$$
\begin{gather*}
A_{i j} \varphi_{j}=F_{i} \quad(i, j=1-4), \quad A_{i j}=\int_{-1-1}^{1} \int_{-1}^{1}\left(u_{i} u_{j}+v_{i} v_{j}\right) \frac{\varepsilon}{J} d \xi d \eta \tag{2.1}\\
u_{k}=\frac{\partial N_{k}}{\partial \xi} \sum_{l=1}^{4} \frac{\partial N_{l}}{\partial \eta} y_{l}-\frac{\partial N_{k}}{\partial \eta} \sum_{l=1}^{4} \frac{\partial N_{l}}{\partial \xi} y_{l} \\
v_{k}=\frac{\partial N_{k}}{\partial \eta} \sum_{l=1}^{4} \frac{\partial N_{l}}{\partial \xi} x_{l}-\frac{\partial N_{k}}{\partial \xi} \sum_{l=1}^{4} \frac{\partial N_{l}}{\partial \eta} x_{l} \quad(k=i, j) \tag{2.3}\\
J=\sum_{i=1}^{4} x_{i} u_{i}, \quad F_{i}=\int_{\Gamma_{l}} \varepsilon \varphi_{n} N_{i} d \Gamma
\end{gather*}
$$

В плоском случае $\varepsilon=1$, в осесимметричном $\varepsilon=2 \pi x, x=x_{i} N_{i}, A_{i j}$ - матрица жесткости. Величины $x_{i}, y_{i}(i, j=1-4)$ - узловые значения координат элемента Ω_{l} в области $\Omega(t)$. Под координатами x и y понимаются в осесимметричном случае цилиндрические координаты r и z.

Функции формы $N_{i}(i=1-4)$ определяются в случае лншейных изопараметрических әлементов формулами

$$
\begin{array}{ll}
N_{4}=\frac{1}{4}(1-\xi)(1-\eta), & N_{2}=\frac{1}{4}(1+\xi)(1-\eta) \tag{2.4}\\
N_{3}=\frac{1}{4}(1+\xi)(1+\eta), & N_{4}=\frac{1}{4}(1-\xi)(1+\eta)
\end{array}
$$

Поэлементное объединение систем вида (2.1) приводит к глобальной систсме уравнений $\mathbf{A} \varphi=\mathbf{F}$ с симметричной ленточной и положительно определенной матрицей А. Система уравнений решается модифицированным методом Гаусса, учитывающим перечисленные свойства матрицы А, коәффициенты которой находятся численным интегрированием по теститочечной формуле Гаусса.
3. Метод граничных элементов. Основным соотношеннем метода граничных элементов является интегральное уравнение вида

$$
\begin{equation*}
\beta \varphi(Q)+\int_{\Gamma} F(P, Q) \varphi(P) d \Gamma=\int_{\Gamma} G(P, Q) \varphi_{n}(P) d \Gamma \tag{3.1}
\end{equation*}
$$

$$
\begin{gathered}
\mathscr{F}(P, Q)=\frac{\partial}{\partial n} G(P, Q) \\
\beta=0, \quad Q \notin \Gamma \cup \Omega(t) ; \quad \beta=1, \quad Q \in \Omega(t) ; \quad \beta=\omega / 2 \pi_{2} \quad Q \in \Gamma
\end{gathered}
$$

где $\varphi(Q)$ - потенциал скорости, $G(P, Q)$ - фундаментальное сингулярное решение уравнения Лапласа, P - точка границы Γ, ω - телесный угол, под которым видна граница Г из точки Q, \mathbf{n} - вектор внешней нормали к Γ в точке P.

Функция $G(P, Q)$ для плоского и цилиндрического случаев имеет вид

$$
\begin{aligned}
G(P, Q)=\frac{1}{2 \pi} \ln \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}, \quad G(P, Q) & =\frac{1}{2 \pi} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{a-b \cos \theta}} \\
a=r^{2}+r_{0}{ }^{2}+\left(z-z_{0}\right)^{2}, \quad b & =2 r r_{0} .
\end{aligned}
$$

Функции $G(P, Q)$ и $F(P, Q)$ в осесимметричном случае выражаются через полные эллиптические интегралы первого и второго рода с модулем m и дополнитель-

$$
\begin{gathered}
G(P, Q)=\frac{K(m)}{\pi \sqrt{a+b}} \\
F(P, Q)=-\frac{K(m)-E(m)}{2 \pi r \sqrt{a+b}} n_{r}+\frac{n_{r}\left(r_{0}-r\right)+n_{z}\left(z_{0}-z\right)}{\pi(a-b) \sqrt{a+b}} E(m) \\
m^{2}=\frac{4 r r_{0}}{\left(r+r_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}, \quad 0 \leqslant m \leqslant 1
\end{gathered}
$$

Для вычисления эллиптических интегралов используются конечно-полиномиальные представления [8]

$$
\begin{gathered}
K(m)=\sum_{i=0}^{n}\left[a_{i} m_{1}{ }^{i}+b_{i} m_{1}{ }^{i} \ln \left(\frac{1}{m_{1}}\right)\right]+\varepsilon(m) \\
E(m)=1+\sum_{i=1}^{n}\left[c_{i} m_{1}{ }^{i}+d_{i} m_{1}{ }^{i} \ln \left(\frac{1}{m_{1}}\right)\right]+\varepsilon(m)
\end{gathered}
$$

при $n=4, \varepsilon(m) \leqslant 2 \cdot 10^{-8}, a_{i}, b_{i}, c_{i}, d_{i}$ - константы.
Переход от уравнения (3.1) к матричному виду осуществляется разбиением границы Γ на конечное число N прямолинейных отрезков $\Gamma_{i}(i=1,2, \ldots, N)$ и линейной аппроксимацией на каждом әлементе функции φ и ее нормальной производной φ_{n}. В результате получается следующая система уравнений относительно φ и φ_{n} в узловых точках:

$$
\begin{gather*}
\beta_{i} \varphi_{i}+\sum_{j=1}^{N} F_{i j} \varphi_{j}=\sum_{j=1}^{N} G_{i j} \frac{\partial \varphi_{j}}{\partial n}, \quad i=1,2, \ldots, N \tag{3.2}\\
F_{i j}=\int_{\Gamma_{j}} N_{1} F(P, Q) d \Gamma+\int_{\Gamma_{l-1}} N_{2} F(P, Q) d \Gamma \tag{3.3}\\
G_{i j}=\int_{\Gamma_{j}} N_{1} G(P, Q) d \Gamma+\int_{\Gamma_{l-1}} N_{2} G(P, Q) d \Gamma \tag{3.4}\\
N_{1}=\frac{1}{2}(1-\xi), \quad N_{2}=\frac{1}{2}(1+\xi), \quad \xi \in[-1,1]
\end{gather*}
$$

Для вычисления интегралов (3.3) и (3.4) используются шеститочечные квадратурные формулы Гаусса. В случае, когда источник расположен на элементе, по которому ведется интегрирование ($i=j$), интегралы (3.4) имеют логарифмическую особенность и для их вычисления используются квадратурные формулы с логарифмическими весами. Сингулярные интегралы (3.3) вычисляются аналитически в смысле главного значения по Коши.

Систему (3.2) можно представить в виде векторного уравнения $\mathbf{A X}=\mathbf{F}$ с квадратной матрицей А размера $N \times N$. Система уравнений решается методом Гаусса с частичным выбором ведущего элемента.

Метод граничных элементов позволяет находить вектор $\nabla \varphi$ через нормальную и касательную составляющие, поскольку из системы (3.2) непосредственно вычисляется нормальная компонента φ_{n}, а касательная составляющая φ_{s} определяется по значениям потенциала. Новое положение свободной границы можно найти из соотношений

$$
\begin{aligned}
& \dot{x}=\varphi_{n} \cos (n, x)+\varphi_{s} \cos (n, y) \\
& \dot{y}=\varphi_{n} \cos (n, y)-\varphi_{s} \cos (n, x)
\end{aligned}
$$

В методе конечных элементов компоненты вектора скорости находятся в виде

$$
\frac{\partial \varphi}{\partial x}=J^{-1} \sum_{i=1}^{4} \varphi_{i} u_{i}, \quad \frac{\partial \varphi}{\partial y}=J^{-1} \sum_{i=1}^{4} \varphi_{i} v_{i}
$$

где величины u_{i}, v_{i} определяются с помощью формул (2.2) и (2.3). Для коптроля и сравнения результатов такой подход использовался и в методе граничных элементов. При этом значения потенциала во внутренних узлах находились из уравнения (3.2) по известному значению потенциала и его нормальной производної на границе.

4. Горизонтальное движение тела под свободной поверхностью. На фиг. 1 показана форма свободной границы при движении с постоянной скоростью v_{0} из состояния покоя полукругового цилиндрического выступа диаметра D по горизонтальному дну влево. Размер области $\Omega(t)$ по горизонтали выбирался равным $12 D(-8 D, 4 D)$. На левой и на' правой границах ставились условия типа «сноса». Глубина невозмущенной жидкости в указанных сечениях принималась равной R.

Задача решалась в неподвижной системе координат. Вычисления проводились одновременно по двум указанным методам. Максимальное отклонение результатов не превышало 2%.

Сетка метода конечных элементов перестраивалась на каждом шаге но времени и состояла из 415 элементов и 504 узлов (при 84 узлах на свободной граниде и 10 узлах на теле). В методе граничных элементов бралось 58 узлов (при 28 узлах на свободной границе и 10 узлах на теле). Графики изображены в подвижной системе координат, связанной с телом. Шаг по безразмерному времени $\tau=v_{0} t / D$ выбирался равным $\Delta \tau=0,1$. Абсциссы и ординаты на графиках отнесены к диаметру тела D. Кривые $1-4$, соответствующие $10,28,35$ и 45 шагам по времени, сдвинуты по вертикали одна под другой.

На фиг. 1 пунктирной линией изображается конфигурация свободной границы для невесомой жидкости (число Фруда $\mathrm{Fr}=v_{0} / \sqrt{g D}=\infty$). За выступом образуется впадина, которая, слабо деформируясь, примерно с той же скоростью v_{0} удаляется от тела. Над телом формируется волна, форма которой уже после 30 шагов практически не нзменяется; за телом па свободной границе образуется «полочка».

Более сложная картина течения наблюдается при движении тела в тяжелой жидкости. На фиг. 1 сплошной линией показаны расчеты для $\mathrm{Fr}=2$. Хорошо видно, как впадина, образовавшаяся за телом, деформируется; в ней появляется всплеск типа кумулятивной струи. Формирование «полочки» начинается после 40 шагов по времени.

Кривые, соответствующие расчетам по обтеканию полукругового цилиндра стационарным потоком идеальной несжимаемой жидкости со свободной границей Γ_{1} для $\mathrm{Fr}=\infty, 2[7,9]$, совпадают по конфигурации волны над телом с кривыми 4 на фиг. 1. Отличие лишь в том, что в нестационарном течении имеется уходящая вниз по течению впадина.
5. Моделирование кумулятивной струи и султана. На фиг. 2 показана эволюция свободной границы, первоначально образующей дилиндрическую или сферическую впадину. Формирование кумулятивной струи в плоском случае, при схлопывании цилиндрической впадины, как само-

Фиг. 2

Фиг. 3

стоятельная задача было рассмотрено ранее методом электрогидродинамической аналогии (ЭГДА) [4]. Цифрами 1 п 2 обозначены кривые, соответствующие моментам безразмерного времени $\tau=t \sqrt{g / R}$, равным $66 \cdot 10^{-2}$ и $69 \cdot 10^{-2}, R$-радиус невозмущенной впадины. Штриховой линией изображена форма кумулятивных струй в осесимметричном случае, сплошной и штрихпунктирной - в плоском случае.. Штрихпунктирная кривая получена методом ЭГДА [4]. Остальные кривые - методами конечных и граничных элементов. Различие плоских кривых объясняется, по-видимому, недостаточной точностью метода ЭГДА. Кроме того, по сравнению с [4] при расчетах по описанным методам полностью выполняется закон сохранения площадей. Все линейные размеры на графиках отнесены к радиусу R.

Процесс схлопывания впадины можно условно разделить на два этапа: медленный ($\tau<60 \cdot 10^{-2}$) - зарождение струи и быстрый ($\tau>60$. -10^{-2}) - выброс струи. Поэтому на первом этапе счет велся с шагом $\Delta \tau=0,1$, на втором - $\Delta \tau=0,01$. Количество элементов и число узлов выбирались такими же, как и при движении тела. Непосредственно на границе впадины в методе конечных элементов бралось 20 узлов, в методе граничных элементов -18 узлов. Область $\Omega(t)$ имела размеры в глубину - $4 R$, в ширину $\pm 5 R$. На границах усеченной области удовлетворялось условие $\varphi=0$.

На фиг. 3 показана эволюция свободной границы невесомой жидкости при вертикальном импульсивном движении әллипса (в плоском случае) и эллипсоида (в осесимметричном) с соотношением осей $4: 5$ (большая ось R направлена по оси y). В начальный момент времени центр эллипса находился на глубине $h=2 R$ от свободной поверхности, затем с

постоянной скоростью v_{0} продвинулся к свободной границе на расстояние $1,5 R$ и остановился.

Кривые 1 и 2 соответствуют 15 и 20 шагам по безразмерному времени $\tau=v_{0} t / R$, с шагом $\Delta \tau=0,1$. Размеры области, отнесенные к величине R, принимались равными 4 в глубину и ± 5 в ширину. Количество узлов на теле равнялось 20 . Граничные условия и общее число узлов брались такими же, как и в предыдущих задачах. Сплошными линиями изображается форма свободной границы в плоском случае, штриховой - в осесимметричном.

Экспериментальное моделирование султана [3] показало, что при выходе тела из воды и его резкой остановке наблюдается сильный продольный градиент скорости вдоль оси симметрии. Полученные численные результаты подтверждают этот факт. Расчеты показывают, что нормальная скорость в точках вершины струи к $15-$ му шагу по времени в плоском случае достигает значения $\varphi_{n}=0,71 v_{0}$, в осесимметричном - $\varphi_{n}=$ $=0,8 v_{0}$.

ЛИТЕРАТУРА

1. Коннор Дж., Бреббиа К. Метод конечных элементов в механике жидкости. Л.: Судостроение. 1979. 263 с.
2. Бенерджи П., Баттерфилд P. Методы граничных элементов в прикладных науках. М.: Мир, 1984. 494 с.
3. Кедринский B. К. Модели М. А. Лаврентьева в задачах неустановившихся течениІ̆ со свободными границами.- В кн.: Проблемы математики и механики. Новосибирск: Наука, 1983, с. 97-116.
4. Лаврентьев $М$. А., ІІабат Б. В. Проблемы гидродинамики и их математические модели. М.: Наука, 1977. 407 с.
5. Константинов Г. А., Якимов Ю. Л. Численный метод решения нестационарных осесимметричных задач гидромеханики идеальной жидкости со свободными поверхностями. - Изв. АН СССР. МЖГ, 1969, № 4, с. 162-165.
6. Воинов O. В., Воинов B. B. Численный метод расчета нестационарных движений идеальной несжимаемой жидкости со свободными поверхностями.- Докл. АН СССР, 1975, т. 221, № 3, с. 559-562.
7. Афанасъев К. Е., Терентьев А. Г. Применение метода конечных элементов в задачах со свободными границами.-В кн.: Динамика сплошной среды с нестационарными границами. Чебоксары: Изд-во Чувашского ун-та, 1984, с. 8-17.
8. Справочпик по специальным функциям/Под ред. Абрамовица М., Стиган И. М.: Наука, 1979. 830 с.
9. Афанасьева М. М. Применение метода граничных элементов в задачах идеальной жидкости со свободными границами.-В кн.: Взаимодействие тел с границами раздела сплошной среды. Чебоксары: Изд-во Чувашского ун-та, 1985, с. 15-19.

Чебоксары Поступила в редакцию
30.IX. 1985

