УДК 532.528

КВАЗИГОМОГЕННАЯ МОДЕЛЬ КАВИТАЦИОННЫХ ТЕЧЕНИИ В ДИФФУЗОРНЫХ КАНАЛАХ

ГОГИШІ Л. в., МОЛОДЫХ О. в.

Начиная с опытов О. Рейнольдса в 1894 г., течение жидкости в трубках Вептури традиционно используется для изучения и демонстрации разнообразных форм кавитации. Известно большое число работ, посвященных экспериментальным исследованиям различных режимов течений жидкости в диффузорных каналах [1-7] и расчетным моделям таких течений $[6,8]$.

Возникновение и развитие кавитации тесно связано с явлением турбулентного отрыва, усложненным наличием двухфазного течения в диссипативной области. Эти явления долгое время рассматривались отдельно. В работе [9] предложена единая расчетная модель кавитации и отрыва, основанная на теории сильного взаимодейного слоя переменной плотности, охватывающая различные стадии кавитации

Цель настоящей работы состоит в демонстрации возможностей этой модели на простейшем примере расчета течений жидкости при наличии кавитации и отрыва в плоских и осесимметричных диффузорных каналах типа трубок Вентури с прямолинейными и криволинейными стенками. Диссипативное течение вблизи стенок описывается квазигомогенной моделью турбулентного двухфазного потока, в которой двухфазность учитывается только изменением средней плотности. Потенциальное ядро потока рассматривается в одномерной постановке. Параметром взаимодействия диссипативного и потенциального потоков служит толщина вытеснения. Определены условия возникновения и развития циркуляционных течений. Приведены примеры симметричных и несимметричных течений.

1. Известно, что кавитация в трубке Вентури развивается за узким сечением при давлении, близком к давлению насыщенных паров p_{v}, и соответствует начальной стадии кавитации (пузырьковая или смешанная). В зависимости от угла раствора диффузора, начального газонасыщения жидкости, формы стенки в зоне критического сечения возможны различные режимы течения: стационарное безотрывное, нестационарное (пульсирующее) с перемежающимся отрывом, стационарное несимметричное, стационарное струйное.

На фиг. 1, a дана фотография осредненного кавитационного течения в плоском расширяющемся канале из [4], на которой видно, что жидкость движется в виде сплошной струи, окруженной по бокам пенообразной смесью. Соответствующая этому режиму схема течения приведена на фиг. 1, $б$.

Поле течения в диффузорной части канала разбивается в поперечном направлении на потенциальное ядро потока и диссипативный кавитационный слой, в продольном направлении - на изобарическую область кавитации I и неизобарическую область II взаимодействия кавитационного слоя с потенциальным ядром потока.

Вследствие кавитации трением на стенке пренебрегается и диссипативный слой рассматривается как след с условной осью вдоль стенки жанала $r_{w}(x)$.

В изображенной на фиг. $1, \sigma$ системе координат

$$
r=r_{w}-y \cos \Theta \approx r_{w}-y
$$

где y-расстояние по нормали от стенки канала; Θ - угол полураствора диффузора.

Сплошной линией изображена граница между диссипативным слоем и потенциальным ядром потока, штриховой линией - граница эквивалентного невязкого потока $r_{c}(x)$; δ^{*} - толщина вытеснения, δ - толщина следа. Распределения коэффициента давления

$$
\begin{equation*}
C_{p}=\left(p_{00}-p\right) /\left(p_{00}-p_{2}\right) \tag{1.1}
\end{equation*}
$$

(p_{00} - полное давление, p_{2} - давление в выходном сечении), средней плотности диссипативного слоя $z=\rho / \rho_{\rho}$ и параметра следа

$$
m=\left(u_{0}-u_{0}\right) / u_{0}
$$

показаны на фиг. 1, в. Здесь ρ_{0} - плотность жидкости, u_{0} - скорость на

Фиг. 1

границе диссипативного слоя, равная скорости потенциального потока; u_{0} - скорость на стенке канала.

В дальнейшем для простоты рассматривается только тот участок, где существует потенциальное ядро потока ($\delta<r_{W}$).

На участке I изобарической области кавитации, где $C_{p}=C_{p_{1}}$, принимается локально-автомодельное течение (с постоянными плотностью $z=$ $=z_{1}$ и параметром слоя $m=m_{1}$) для кавитационного слоя со скольжением на стенке, как для автомодельного турбулентного слоя смешения, расположенного между спутными потоками.

В области II течение определяется взаимодействием. кавитационного слоя с потенциальным ядром потока с граничным условием в выходном

сечении трубки при $x=x_{2}$, где давление $p=p_{2}$, или $C_{p_{2}}=1$. Штрихпунктиром на фиг. 1, в показано распределение давления одномерного невязкого потока в отсутствие кавитации.

Расчет плоского потенциального потока в канале производят путем решения соответствующей краевой задачи со смешанными граничными условиями по формуле Келдыша - Седова после отображения внутренности канала на полосу. В осесимметричном случае для этой цели можно использовать подходящие численные методы.

В настоящей работе упрощение задачи заключается в том, что потендиальное ядро потока с учетом реальных ограничений на угол раствора диффузора ($2 \Theta \leqslant 20^{\circ}$), рассматривается в одномерной постановке, аналогично тому, как это делается в аәродинамике сопел и диффузоров в связи с малостью отношения поперечного размера канала к радиусу кривизны его стенки.

В пристенном кавитирующем слое принимается квазигомогенная модель течения, согласно которой двухфазность потока учитывается только изменением средней поперек слоя относительной плотности кавитационного слоя по его длине.

Отметим, что квазигомогенные модели широко используются для расчета двухфазных течений в каналах [12].
2. Турбулентный след переменной плотности описывается, как и в [10], простейшими уравнениями импульса для следа и вдоль его оси, а также уравнением взаимодействия с потенциальным ядром потока.

$$
\begin{gather*}
\frac{d}{d x}\left(\ln \delta^{* *} r_{w^{j}}{ }^{j}\right)+(2+H) \frac{d \ln \vartheta}{d x}=0, \quad H=\frac{\delta^{*}}{\delta^{* *}} \tag{2.1}\\
\rho_{0} u_{0} \frac{d u_{0}}{d x}+\frac{d p}{d x}=\left(\frac{\partial \tau}{\partial y}\right)_{0}, \quad \tau=\mu \frac{\partial u}{\partial y} \tag{2.2}\\
\delta^{*}=r_{w}-r_{c} \tag{2.3}
\end{gather*}
$$

Здесь $j=0$ или 1 в плоском или осесимметричном случае.
Турбулентная вязкость в (2.2) выражается простейшей формулой Прандтля с точностью до эмпирической константы x

$$
\begin{equation*}
\mu=x \rho_{0} \delta\left(u_{\delta}-u_{0}\right) \tag{2.4}
\end{equation*}
$$

Индексы δ и 0 относятся соответственно к параметрам на внешней границе и на условной оси следа. Изменение средней относительной плотности слоя $z(x)$ по длине канала описывается уравнением релаксационного типа

$$
\begin{equation*}
d z / d x=(1-z) / L \tag{2.5}
\end{equation*}
$$

где расчетный параметр L представляет собой длину релаксации плотности, которая зависит от физических свойств жидкости.

Для описания течения в турбулентном ближнем следе при наличии возвратных течений принимается, как и в [10], однопараметрический профиль скорости

$$
\begin{gather*}
u / u_{\delta}=1-m f(\eta), \quad m=\left(u_{\delta}-u_{0}\right) / u_{\delta}, \quad \eta=y / \delta \tag{2.6}\\
f(\eta)=\frac{u_{\delta}-u}{u_{\delta}-u_{0}}=1-3 \eta^{2}+2 \eta^{3} \tag{2.7}
\end{gather*}
$$

Здесь $f(\eta)$ - универсальная функция распределения дефекта скорости; η - безразмерная координата слоя, отсчитываемая от стенки. Прямому течению в слое соответствует значение $0<m<1$, точке отрыва и присоединения $-m=1$, возвратному течению $-m>1$.

Интегральные относительные толщины кавитационного следа пере-

менной плотности зависят от параметров m и z

$$
\begin{gather*}
H^{*}=\int_{0}^{1}\left(1-\frac{\rho u}{\rho_{0} u_{0}}\right)\left(1-\frac{y}{r_{w}}\right)^{j} d \eta=\frac{2(1-z)+m z}{2}-j \frac{\delta}{2 r_{W}}\left(1-z+\frac{3 m z}{10}\right) \\
H^{* *}=\int_{0}^{1} \frac{\rho u}{\rho_{0} u_{0}}\left(1-\frac{u}{u_{0}}\right)\left(1-\frac{y}{r_{w}}\right)^{j} d \eta= \tag{2.8}\\
=\frac{m z}{2}\left(1-\frac{26}{35} m\right)+j \frac{m z}{2} \frac{\delta}{r_{W}}\left(\frac{6 m}{35}-\frac{3}{10}\right) \tag{2.9}
\end{gather*}
$$

Уравнение взаимодействия (2.3) можно представить в виде

$$
\begin{equation*}
d \delta^{*} / d x=d r_{w} / d x-d r_{c} / d x \tag{2.10}
\end{equation*}
$$

Для потенциального ядра потока из одномерных уравнений неразрывности и Бернулли

$$
\begin{align*}
& u r^{j+1}=u_{2} r_{2}^{j+1} \tag{2.11}\\
& \rho u^{2} / 2=p_{00}-p \tag{2.12}
\end{align*}
$$

следует, что коэффициент давления

$$
\begin{equation*}
C_{p}=\frac{p_{00}-p}{p_{00}-p_{2}}=\left(\frac{u}{u_{2}}\right)^{2}=\vartheta^{2}=\left(\frac{r_{2}}{r}\right)^{2(j+1)} \tag{2.13}
\end{equation*}
$$

При значении радиуса начального сечения канала $r_{1}=1 ; r=$ $=\left(C_{1} / C\right)^{1 / 2(j+1)}$.

Здесь $\vartheta=\dot{\imath} / u_{2}$; индексы 1 и 2 относятся к параметрам потока соответственно в начальном и выходном сечениях канала; для простоты индекс c у координат границы эквивалентного невязкого потока и индекс p у коэффициента давления опускаются.

Из (2.1)-(2.3) с учетом (2.4) - (2.13) после преобразований получается

$$
\begin{gather*}
\frac{\partial \ln H}{\partial m} \frac{d m}{d x}-\frac{1}{2}\left\{2+H+\frac{\left(C_{1} / C\right)^{1 / 2(j+1)}}{(j+1)\left[r_{W}-\left(C_{1} / C\right)^{1 / 2(j+1)}\right]}\right\} \frac{d \ln C}{d x}= \\
=\frac{d r_{W} / d x}{r_{W}-\left(C_{1} / C\right)^{1 / 2(j+1)}}-\frac{\partial \ln H}{\partial z} \varphi+j \frac{d r_{W} / d x}{r_{W}} \tag{2.14}\\
(1-m) \frac{d m}{d x}+\frac{1}{2}\left[m(2-m)+\frac{1-z}{z}\right] \frac{d \ln C}{d x}=-(-k x) \frac{m^{2} H^{*}}{r_{W}-\left(C_{1} / C\right)^{1 / 2(j+1)}} \\
\varphi=\frac{d z}{d x}=\frac{1-z_{1}}{L} \exp \left(-\frac{x-x_{1}}{L}\right) \tag{2.15}
\end{gather*}
$$

В уравнении (2.15) величина $-k=d^{2} f / d x^{2}(0)$; произведение $-k \varkappa$ представляет собой эмпирическую постоянную, характеризующую турбулентное трение в следе. Форма стенки задается выражением

$$
\begin{equation*}
r_{W}=1+a x^{n}, \quad d r_{W} / d x=n a x^{n-1} \tag{2.17}
\end{equation*}
$$

3. Начальные условия уравнений (2.14) и (2.15) задаются в сечении $x=x_{1}$. Значение z_{1} определяется физическими свойствами жидкости и ее газосодержанием, от которых зависит также местное число кавитации $\Sigma=2\left(p_{1}-p_{v}\right) / \rho u_{1}{ }^{2}$, характеризующее возникновение кавитации в узком сечении канала. Согласно [3], для плавного входа в канал величина $\Sigma=0-0,05$.

Если ввести число Эйлера $E=\left(p_{00}-p_{v}\right) /\left(p_{00}-p_{2}\right)$, то при условии возникновения кавитации в канале начальное значение коәффициента давления $C_{1}=E /(1+\Sigma)$.

Начальное значение параметра следа m_{1} в сечении $x=x_{1}$ принимается таким же, как в конце изобарической зоны.

Для кавитационного слоя в изобарической области принимается автомодельное

течение со скольжением на стенке, как для турбулентного слоя смешения, расположенного между спутными потоками.

Коэффициент утолщения b этого слоя выражается в полуэмпирической теории. струй и следов переменной плотности [11]

$$
\begin{equation*}
b=\frac{d \delta}{d x}=b_{0} \frac{1+\rho_{2} / \rho_{1}}{2} \frac{1-u_{2} / u_{1}}{1-\left(\rho_{2} u_{2}\right) /\left(\rho_{1} u_{1}\right)} \tag{3.1}
\end{equation*}
$$

Использование (3.1) для коэффициента утолщения кавитационного слоя дает

$$
\begin{equation*}
b=b_{0} \frac{m_{1} z_{1}}{1+\left(1-m_{1}\right)\left(2 z_{1}-1\right)} \tag{3.2}
\end{equation*}
$$

Из условия

$$
\begin{equation*}
d \delta^{*} / d x=d\left(\delta H^{*}\right) / d x=b H^{*}=d r_{w} / d x \tag{3.3}
\end{equation*}
$$

записанного для изобарической области, с учетом (3.2) и (2.8) следует:

$$
m_{1}=m\left(z_{1}, a, n\right)
$$

Длина изобарической области x_{1}, распределение давлений и скоростей по длине канала, положение и размеры области отрыва определяются из решения краевой задачи для уравнений (2.14) и (2.15) с начальными и краевым условиями

$$
\begin{gathered}
x=x_{1}, \quad m=m_{1}, \quad C=C_{1} \\
x=x_{2}, \quad C=C_{2}=1
\end{gathered}
$$

Расчеты проводились для плоских и осесимметричных каналов при обычных значениях констант турбулентности $b_{0}=0,27 ;-k x=0,03$.
4. На фиг. 2 приведены экспериментальные распределения давления вдоль круглого канала с прямолинейными стенками с углом $2 \Theta=6^{\circ}$ из работы [8]. Кривые $1,2,3$ (птриховые линии) получены при значениях полного напора $p_{00}=1,405 ; 1,645$; 2,157 кгс/см ${ }^{2}$. По мере увеличения p_{00} степень кавитации увеличивается, что проявляется в возрастании длины изобарической зоны.

Расчетные зависимости $C_{p}(x)$ для этого же канала, обозначенные на фиг. 2 сплошными линиями $1,2,3$, получены по развитому методу при значениях начальных параметров, соответствующих эксперименту [8]. Коэффициент давления C_{p} определен по (1.1), через x здесь и в дальнейшем обозначена координата вдоль оси канала, отнесенная к радиусу критического сечения $x=x / r_{1}$. Значения C_{p}, соответствующие экспериментальным данным, показаны точ-

Фиг. 2 ками.

Сопоставление расчетных зависимостей с результатами экспериментов свидетельствует о применимости квазигомогенной модели парожидкостной смеси в кавитирующем слое для расчета течений в диффузорных каналах.

На фиг. 3 представлена расчетная структура течения в диффузорной части плоского канала с прямолинейными стенками в зависимости от начального коэффициента давления $C_{1}\left(2 \Theta=12^{\circ}, z_{1}=0,6, L=1\right.$, значения C_{1} для расчетных случаев $1-3$ составляют 2,$0 ; 1,55 ; 1,2$). Подчеркнем, что здесь изображена осредненная картина симметричного течения (показана верхняя часть канала; масштаб по оси r увеличен вдвое).

Монотонное изменение средней плотности z вдоль кавитирующего слоя условно показано штриховкой переменной густоты.

Отмечены три области: изобарическая область кавитации, где плот-

Фиг. 3

ность постоянна и равна начальной $z=z_{1}$, заштрихована густо; более светлой штриховкой обозначены области, где объемная концентрация газовой фазы уменьшается и средняя плотность кавитационного слоя составляет $z_{1}<z<0,95$ и $0,95<z<1$.

Незаштрихованные зоны соответствуют бескавитационным областям течения - потенциальному ядру и той части диссипативного слоя, где плотность $z=1$. Области циркуляционных течений, для наглядности не заштрихованные, отделены от прямого течения разделяющими линиями тока, относительные координаты которых определены из условия равенства нулю суммарного расхода жидкости в зоне циркуляционных течений

$$
Q=\frac{Q}{u_{\diamond} \rho_{\delta} \delta}=\int_{0}^{\eta_{p}} \frac{u}{u_{\delta}} z\left(1-\eta \frac{\delta}{r_{w}}\right)^{j} d \eta=0
$$

Штриховыми линиями в областях отрыва обозначены линии нулевой скорости, построенные по (2.6) - (2.7) при $u / u_{0}=0$.

Приведенные результаты демонстрируют влияние на характеристики течения коэффициента давления C_{1}. (При фиксированной величине противодавления p_{2} уменьшение коэффициента давления соответствует увеличению напора жидкости на входе в диффузор.) Первоначально, при небольших величинах напоров, в диффузоре формируется безотрывное течение. По мере увеличения напора растет степень кавитации (длина изобарической зоны) ; утолщается диссипативный слой; за изобарической зоной возникает отрыв потока (режим 1); размеры области отрыва постепенно увеличиваются, она сносится по направлению к выходному сечению диффузора. Характер течення меняется: вначале вследствие

Фиг. 5
вторичного присоединения область отрыва замкнута (режим 2); начиная с некоторых C_{1}, возникает полный отрыв потока (режим 3).

Влияние формы стенок плоского канала на структуру кавитационного течения и отрыв потока иллюстрируется на фиг. 4, где представлены результаты расчетов для диффузора с вогнутыми и выпуклыми стенками. Длина канала $x_{3} / r_{1}=15$, степень расширения $r_{2} / r_{1}=2,5$, значения расчетных параметров $C_{1}=1,55 ; L=1 ; z_{1}=0,6$. Видно, что степень кавитации и характер отрыва существенно зависят от формы стенок; при переходе от вогнутой к выпуклой стенке уменьшается длина изобарической зоны; отрыв начинается тем раньше, чем более выпукла стенка канала.

Известно, что в действительных условиях в одних и тех же каналах могут реализоваться как симметричные струйные течения, так и несимметричные, когда жидкость примыкает к одной из стенок канала. Возможность их расчета продемонстрирована на фиг. 5 , где представлена картина несимметричного течения в плоском канале с $2 \Theta=12^{\circ} ; z_{1}=0,6$; $L=1 ; C_{1}=1,55$ (симметричное течение в котором показано на фиг. 3 , режим 2).

Сопоставление результатов расчетов для плоских и осесимметричных каналов показывает, что при одинаковых длине, степени расширения, форме стенок каналов и значениях начальных параметров реализуется практически одинаковая степень кавитации (длина изобарической зоны); однако в осесимметричном случае развивается более толстый кавитационный слой и формируется область отрыва больших размеров.

Развитая теория может быть использована для анализа и обобщения имеющихся в литературе экспериментальных данных, касающихся влияния физических свойств жидкости на возникновение и развитие кавитации. Представляется полезным, например, путем корреляции результатов расчетов с экспериментальными данными, полученными в идентичных каналах для разлпчных жидкостей, выявить зависимости таких параметров, как средняя плотность кавитационного слоя z и длина релаксации плотности L, от физических свойств жидкостей.

ЛИТЕРАТУРА

1. Прандтль Л. Гидроаэромеханика. М.: Изд-во иностр. лит., 1951. 576 с.
2. Кнәпп Р., Дейли Дж., Хәммит Ф. Кавитация. М.: Мир, 1974, 687 с.
3. Леман, Юнг. Экспериментальные исследования начальной и конечной стадий кавитадии.- Тр. амер. о-ва инж.-мех. Теор. основы инж. расчетов, 1964, т. 86, 츠 2, с. 133-143.
4. Johnson V. E., Jr. Investigation of cavity flows by experimental means.- В кн.: Неустановившиеся течения воды с большими скоростями. М.: Наука, 1973, c. 59-83.
5. Смит, Аткинсон, Хәммитт. Измерения степени кавитации в кавитирующем расходомерном сопле. - Тр. амер. о-ва инж.-мех. Теор. основы инж. расчетов, 1964, т. 86, № 2, с. 122-132.
6. Эпштейн Л. А. Возникновение и развитие кавитации.- В кн.: Сборник работ по гидродинамике. М.: Тр. ЦАГИ, 1959, с. 41-118.
7. Эпитейи Л. А. Методы теории размерностей и подобия в задачах гидромеханики судов. Л.: Судостроение, 1970. 207 с.
8. Казеннов А. К., Коровушкин В. Ю., Прокофъев В. В. Исследование струйных течений и нестацнонарных течений со свободными границами. Исследование кавитирующих струй. М.: 1984. 87 с. (Отчет Ин-та мех. МГУ, № 2908).
9. Гогии Л. В., Степанов Г. Ю. Турбулентные отрывные течения.- Изв. АН СССР. МЖГ, 1982, ㄲo 2, с. 31-47.
10. Гогии Л. В., Степанов Г. Ю. Турбулентные отрывные течения. М.: Наука, 1979. 367 c .
11. Абрамович Г. Н., Гиршович Т. А., Крашенинников С. Ю. и др. Теория турбулентных струй. М.: Наука, 1984. 716 с.
12. Кутателадзе C. $С$., Стырикович М. А. Гидродинамика газожпдкостных систем. М., Энергия, 1976, 295 с.
