MEXAHИKA
ЖИДКОСТИИГАЗА
№ 5 - 1986

УДК 532.527:519.63

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ПЕРЕХОДОВ В ПЛОСКОМ СДВИГОВОМ СЛОЕ

козЛОВ В. Ф., ЯРОЩУК Е. В.

В плоских задачах гидродинамики под сдвиговым слоем подразумевается переходная зона между двумя параллельными потоками с различными скоростями [1]. В изучении структуры и эволюции этих слоев на моделях идеальной однородной несжимаемой жидкости распространен подход, при котором определяются возможныє стационарные состояния сдвиговых слоев, исследуется их устойчивость и изучается процесс распада выделенных неустойчивых состояний. Интересный класс стационарных состояний представляют области постоянной завихренности, периодически повторяющиеся вдоль оси x с длиной волны L. В предположении, что отдельные вихри можно аппроксимировать эллипсами с полуосями a и b, в [2] указано условие существования стационарного состояния $L>3,3 \overline{\gamma_{a} b}$. Форма отдельных вихрей в такой цепочке, включая предельный случай их соприкосновения, численно определена в [3]. В работах [4, 5] этот класс был дополнен решениями, бифурцирующими от вихревой пелены конечной толщины. Представляет несомненный интерес моделирование возможных переходов между различными структурами сдвигового слоя, различающимися характером распределения завихренности. В настоящей статье приводятся некоторые результаты численного репения задач указанного типа, построенных с помощью метода контурной динамики [6]. Этот метод недавно был успешно применен для исследования поведения слоя постоянной завихренности возле твердой стенки [7] и воспроизведения нелинейной неустойчивости Кельвина - Гельмгольца свободного сдвигового слоя при конечных начальных возмущениях [8].

1. Пусть мгновенное состояние сдвигового слоя аппроксимируется бесконечным рядом периодически повторяющихся областей постоянной завихренности ω_{0}, одну из которых обозначим через $S(t)$. Функция тока имеет представление

$$
\begin{gather*}
\psi(x, y, t)=\omega_{0} \iint_{S(t)} G(\xi-x, \eta-y) d \xi d \eta \tag{1.1}\\
G(x, y)=\frac{1}{4 \pi} \ln \left[\operatorname{ch}\left(\frac{2 \pi y}{L}\right)-\cos \left(\frac{2 \pi x}{L}\right)\right]
\end{gather*}
$$

Преобразуя интеграл (1.1) в контурный по границе $C(t)$ области $S(t)$, получим для функции тока и проекций вектора скорости выражения

$$
\begin{gather*}
\psi(x, y, t)=-\omega_{0} \oint_{c(t)} F(\xi-x, \eta-y) d \xi \tag{1.2}\\
u=-\psi_{y}=-\omega_{0} \oint_{c(t)} G(\xi-x, \eta-y) d \xi \tag{1.3}\\
v=\psi_{x}=-\omega_{0} \oint_{c(t)} G(\xi-x, \eta-y) d \eta \tag{1.4}\\
F(x, y)=\int_{0}^{y} G(x, y) d y
\end{gather*}
$$

Если завихренные области непрерывно переходят одна в другую (сдвиговой слой представляет бесконечную полоску), в формулах (1.2) - (1.4) интегралы по вертикальным участкам $C(t)$ в сечениях $\xi=0$ п $\xi=L$ в силу периодичности взаимно уничтожаются. Возникающие в подынтегральных функциях при (x, y) $\in C(t)$ логарифмические особенности легко устраняются интегрированием по частям.

Эволюция контура $C(t)$ описывается дифференциальными уравнениями $d x / d t=u, d y / d t=v$, где под (x, y) подразумеваются лагранжевы координаты произвольной жидкой частицы на контуре. Принятый в настоящей работе вычислительный алгоритм [9] предусматривает параметрическое задание контура с последующей аппроксимацией его конечным множеством опорных точек, которое в целях равномерного распределения узлов после каждого временного шага перестраивается с использованием техники периодических кубических сплайнов. Интегрирование эволюционных уравнений осуществлялось по схеме Эйлера с пересчетом.
2. Перейдем к обсуждению численных экспериментов. В первой серии расчетов в качестве начального состояния принималась прямолинейная полоса постоянной завихренности шириной h. Для возмущений, пропорциональных $\exp (\lambda t+2 \pi m x i / L)$, имеем [10]

$$
\lambda= \pm \frac{\omega_{0}}{2} \sqrt{\Phi(z)}, \quad z=2 \pi m q, \quad q=\frac{h}{L}, \quad \Phi(z)=e^{-2 z}-(1-z)^{2}
$$

Функция Ф(z) положительна в промежутке $0<z<\mu=1,278$, достигая максимума $\Phi(v)=0,162$ в точке $z=v=0,797$. Отсюда следует, что при заданном m и условии $z=v$ в процессе развития неустойчивости должна преобладать m-я мода. Это полностью подтвердилось в численных экспериментах, в которых постоянно возмущающим пумом служили ошибки аппроксимации и округления в ЭВМ. В каждом случае развивалась характерная для неустойчивости Гельмгольца картина сворачивания вихревой пелены конечной толщины в систему компактных квазиэллиптических вихрей, соединенных тонкими нитями завихренности. Переход к нелинейной стадии распада значительно ускоряется, если полосе придать начальное возмущение, согласованное с ожидаемой теоретической модой.

На фиг. 1 представлены начальная конфигурация (a) и результат расчета в безразмерный момент времени $\tau=\omega_{0} t=24$ (б) при $q=0,0625$, что очень близко к условию максимального развития второй моды. Толстыми линиями показаны границы области $S(t)$, а тонкие изображают линии тока, вычисленные с помощью (1.2). Амплитуда косинусоидального исходного возмущения составляла 10% от ширины невозмущенной полосы. Для аппроксимации горизонтальных участков контуров в начальный момент времени использовалось по 60 узлов, число которых в дальнейшем автоматически увеличивалось пропорционально растущей длине каждого контура (до 165 при $\tau=24$).

По данным трех экспериментов, выполненных при $q=0,125 ; 0,0625$; 0,0415 и отвечающих $m=1,2,3$, были определены для сформировавшихся вихрей средние отношения $\chi=b / a$ минимального и максимального диаметров; они оказались близки к 0,5 .

Во второй серии экспериментов изучалась эволюция цепочки первоначально круглых вихрей радиуса r, центры которых расположены на расстоянии L друг от друга. Более естественным было бы исходить из известных стационарных состояний [3-5], однако это оказалось затруднительным из-за представления последних в цитированных источниках лишь в графической форме. Возможность существования квазистационарной цепочки первоначально круглых областей постоянной завихренности изучалась методом точечных вихрей в [2], где показано, что при $p=r / L=$ $=0,32$ система разрушается, а при $p=0,26$ вихри колеблются с периодом, близким к $T=12 / \pi^{2} p^{2} \omega_{0}$.

Ниже сделана попытка уточнить критическое значение p^{*} и проследить за эволюцией цепочки в случае ее распада. Всего было выполнено 11 экспериментов в интервале $0,24 \leqslant p \leqslant 0,45$. При $p \leqslant 0,249$ вихри периодически меняют свою форму в качественном согласии с моделью [11] движения эллиптического вихря в потоке с постоянным сдвигом скорости. При $p=0,250$, вытянувшись вдоль оси цепочки, соседние вихри налегают концами друг на друга, образуя конфигурацию, очень сходную со стационарным состоянием, бифурцирующим от сдвигового слоя постоянной толщины $[4,5]$. При дальнейшем увеличении параметра p вихри все больше вытягиваются в продольном направлении, прижимаясь друг к другу.

Пример эволюции указанного типа при $p=0,260$ приведен на фиг. 2 , на которой хорошо видно, как исходное поле линий тока (a) трансфор-

Фиг. 1

Фиг. 2

мируется при $\tau=10,7$ в структуру (б), характерную для слабо возмущенного сдвигового слоя конечной толщины (ср. с фиг. 1, a). Если допустить, что возможна эволюция цепочки в стационарный сдвиговой слой постоянной толщины, из условия сохранения завихренных площадей находим $q=\pi p^{2}$, откуда при $p^{*}=0,250$ следует $q=0,196$, что чуть меньше рэлеевского критерия устойчивости $q^{*}=\mu / 2 \pi=0,203$ для первой моды. На самом деле при $q>0,250$, как показывает анализ сформировавшихся полос переменной толщины, их границы представляют почти гармонические волны, фазовые скорости распространения которых близки к значениям, предсказываемым линейной теорией возмущений устойчивых прямолинейных полос постоянной ширины $q>q^{*}$.

Фигура 1 иллюстрирует характерную для метода контурной динамики особенность, связанную с появлением динамически незначимых тонких и длинных нитей завихренности (или безвихревых перемычек на фиг. 2, б), требующих для своего разрешения все возрастающих ресурсов ЭВМ. Искусственное устранение указанных нитей и изменение топологии слоя делает возможным продолжение эксперимента и моделирование субгармонической неустойчивости с последующим спариванием вихрей [1]. Эксперимент такого типа приведен на фиг. 3, где для первоначально прямолинейной сдвиговой полосы с $q=0,07$ в момент $\tau=72$ (a), когда уже заметно возбуждение субгармонической неустойчивости, было выполнено отсечение нитей в отмеченных короткими засечками местах и расчет продолжен далее до фактического слияния двух вихрей в один при $\tau=110$ (б) с характерным внбросом новых нитей. Отметим эффект вовлечения незавихренной жидкости внутрь сформировавшегося нового вихря. Ранее процесс субгармонической неустойчивости и спаривания моделировался методом точечных вихрей [12].

Два прилегающих сдвиговых слоя с постоянными завихренностями разных знаков моделируют простейшее струйное течение с кусочно-линейным профилем скорости. На фиг. 4 представлена рассчитанная эволюция симметричной струи с $h_{1}=h_{2}=0,0975 L$ (a) (максимально растущей является вторая мода; изображены полтора пространственных периода), приводящая при $\tau=71$ (б) к формированию кармановской дорожки в соответствии с моделью неустойчивости ламинарного следа [13].

Выполненные численные эксперименты свидетельствуют о перспективности метода контурной динамики как средства моделирования форми-

рования и разрушения различных вихревых структур в плоских течениях идеальной несжимаемой жидкости. Приведенные на фиг. 1,2 примеры иллюстрируют двойственную природу сдвигового слоя и демонстрируют характер взаимных переходов полоска - депочка и обратно. Такие процессы, в частности, представляют большой интерес для океанологии, где климатические фронтальные разделы, проявляющие себя в природе попеременно в одной из двух указанных выше форм, моделируются в виде сдвиговых слоев.

ЛИТЕРАТУРА

1. Гидродинамические неустойчивости и переход к турбулентности. М.: Мир, 1984. 344 c.
2. Moore D. W., Saffman P. G. The density of organized vortices in a turbulent mixing layer. - J. Fluid Mech., 1975, v. 69, № 3, p. 465-473.
3. Дудоладов И. В., Садовский В. С. Исследование цепочки вихрей конечного поперечного сечения.- Уч. зап. ЦАГИ, 1977, т. 8, № 6, с. 9-17.
4. Saffman P. G., Szeto R. Structure of a linear array of uniform vortices.- Stud. Appl. Math., 1981, v. 65, № 3, p. 223-248.
5. Pierrehumbert R. T., Widnall S. E. The structure of organized vortices in a free shear layer.- J. Fluid Mech., 1981, v. 102, p. 301-313.
6. Zabusky N. J., Hughes M. H., Roberts K. V. Contour dynamics for the Euler equations in two dimensions.- J. Comout. Phys., 1979, v. 30, № 1, p. 96-106.
7. Pullin D. I. The nonlinear behaviour of a constant vorticity layer at a wall.J. Fluid Mech., 1981, v. 108, p. 401-421.
8. Pozrikidis C., Higdon J. J. L. Nonlinear Kelvin-Helmholtz instability of a finite vortex layer.- J. Fluid Mech., 1985, v. 157, p. 225-263.
9. Козлов В. Ф., Макаров В. Г. Моделирование неустойчивости осесимметричных вихревых шнуров с помощью метода контурной динамики.- Изв. АН СССР. МЖГ, 1985, № 1, с. 33-39.
10. Рэлей, Дж. В. Стрәтт. Теория звука. Т. 2. М.: Гостехиздат, 1955. 476 с.
11. Kida S. Motion of an elliptic vortex in uniform shear flow.- J. Phys. Soc. Jap., 1981, v. 50, № 10, p. 3517-3520.
12. Acton E. The modelling of large eddies in a two-dimensional shear layer.- J. Fluid Mech., 1976, v. 76, № 3, p. 561-592.
13. Christiansen J. P., Zabusky N. J. Instability, coalescence and fission of finite-area vortex structures.- J. Fluid Mech.. 1973, v. 61, № 2, p. 219-243.
Владивосток
Поступила в редакцию
10.XI. 1985
