MEXAHИKA
 ЖИДКОСТИИГАЗА
 № 5 - 1986

УДК 532.517.4.011

ОБТЕКАНИЕ ТУРБУЛЕНТНЫМ ПОТОКОМ ВОЗДУХА ДВИЖУЩЕИСЯ КРИВОЛИНЕЙНОЙ ПОВЕРХНОСТИ

МАКИН в. К.

Описывается численная модель обтекания турбулентным потоком воздуха криволинейной поверхности. Модель основана на двумерных нелинейных уравнениях Рейнольдса и уравнениях неразрывности, записанных в системе координат, связанной с профилем криволинейной поверхности. Напряжения Рейнольдса представляются в виде произведения изотропного коэффициента турбулентной вязкости, линейно возрастающего с высотой, и тензора деформации поля средней скорости. Имитируется обтекание неподвижной синусоидальной поверхности и синусоидальной гравитационной волны на воде. Получена структура волновых полей скорости и давления. Анализируются различия в обтекании неподвижной и подвижной поверхностей.

1. Постановка задачи. Рассматривается несжимаемый турбулентный поток воздуха в двумерной области $0<x<L, \eta(x, t)<z<h$, где x, z и t декартовы координаты и время, L и h - длина и высота области, $\eta(x, t)$ профиль криволинейной поверхности. Полные нелинейные уравнения Рейнольдса и уравнение неразрывности в системе координат (x, ξ), где $\xi=(z-\eta) /(h-\eta)$, зашисывается в виде

$$
\begin{gather*}
\frac{\partial u_{i}}{\partial t}+\frac{\partial \xi}{\partial t} \frac{\partial u}{\partial \xi}+A_{j m} \frac{\partial}{\partial x_{m}}\left(u_{i} u_{j}+\overline{u_{i}^{\prime} u_{j}^{\prime}}\right)=-A_{i m} \frac{\partial p}{\partial x_{m}} \tag{1.1}\\
A_{i m} \frac{\partial u_{i}}{\partial x_{m}}=0 \tag{1.2}
\end{gather*}
$$

где $i=1$, 2 , и по повторяющимся индексам производится суммирование; $x_{1}=x, x_{2}=\xi ; u_{1}=u$ и $u_{2}=w$ - горизонтальная и вертикальная компоненты скорости; вместо полного давления P введено его отклонение от гидростатического p

$$
p=\frac{P}{\rho}+g \int_{\xi}^{\varepsilon_{n}}\left(\frac{\partial \xi}{\partial z}\right)^{-1} d \xi
$$

где ρ - плотность воздуха, g - ускорение свободного падения.
Матрица преобразования координат имеет вид

$$
A=\left[\begin{array}{cc}
1 & -H^{-1} \frac{\partial}{\partial x}(\eta+\xi H) \\
0 & H^{-1}
\end{array}\right], \quad H=h-\eta
$$

Замыкание уравнений (1.1), (1.2) основано на традиционном подходе, разработанном для нестационарного и неоднородного пограничного слоя над плоской поверхностью [1]. Известно, что отклонение от автомодельной структуры в системе координат, связанной с поверхностью, является эффектом малых возмущений. В результате выбор моделей турбулент-

ности различной степени сложности практически не влияет на воспроизводимые поля волновых флуктуаций скорости и давления. Это обстоятельство позволяет применять наиболее простую модель, в которой одноточечные моменты второго порядка представляются в виде произведения изотропного коэффициента турбулентной вязкости K и компонент тензора деформации поля скоростей [1]

$$
\overline{\overline{u_{i}{ }^{\prime} u_{j}^{\prime}}}=\frac{2}{3} e \delta_{i j}-K\left(A_{j m} \frac{\partial u_{i}}{\partial x_{m}}+A_{i m} \frac{\partial u_{j}}{\partial x_{m}}\right)
$$

Предполагается, что K зависит от координаты ξ так же, как в автомодельном пограничном слое $K=v * \varkappa \xi H$, где $v *$ - скорость трения, $\chi=0,4$ постоянная Кармана. Конкретные значения кинетической энергии турбулентности e несущественны, так как уравнения (1.1) допускают переопределение давления по формуле $p=p+2 / 3$ е. Этот метод замыкания уравнений проверялся воспроизведением результатов, полученных в [3, 4], где для замыкания использовалось полуэмпирическое уравнение эволюции энергии турбулентности с известными гипотезами Колмогорова. Сравнение показало практическое совпадение всех рассчитываемых характеристик пограничного слоя. Хорошее согласование этих расчетов с данными лабораторных измерений в пограничном слое над волнами [4] обосновывает возможность применения выписанной модели турбулентности для исследования обтекания криволинейных поверхностей.

На поверхности $\xi=0$ турбулентные потоки импульса определяются квадратичным законом локального трения (законом стенки), который в криволинейной системе координат имеет вид

$$
\begin{gathered}
A_{j 3} \overline{u_{i}^{\prime} u_{j}^{\prime}}=-c_{1}|\Delta u| B_{i j} A_{j 3} \quad(\xi=0) \\
B_{i j}=\Delta\left(u_{i} A_{j 3}+u_{j} A_{i 3}\right), \quad c_{1}=\chi^{2}\left[\ln \left(\xi^{+} H / z_{0}\right)\right]^{-2}
\end{gathered}
$$

Здесь c_{1} - коэффициент сопротивления, z_{0} - параметр шероховатости, Δ - оператор, означающий разность величин на уровне ξ^{+}и на самой поверхности.
2. Граничные и начальные условия; метод решения. На нижней и верхней границах области задаются значения компонент скорости

$$
\begin{equation*}
u_{i}=u_{i 0} \quad(\xi=0), \quad u_{1}=\text { const }, \quad u_{2}=0 \quad(\xi=1) \tag{2.1}
\end{equation*}
$$

При $t=0$ задаются профили скорости и давления

$$
u(\xi)=\frac{v_{*}}{x} \ln \left(\frac{\xi h}{z_{0}}\right), \quad w(\xi)=p(\xi)=0
$$

Задача решается численно. Перепишем (1.1) в виде

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}=F_{i}^{l}-A_{i m} \frac{\partial p^{l+1}}{\partial x_{m}} \tag{2.2}
\end{equation*}
$$

где в F_{i} включены члены, стоящие в левой части (1.1); l - номер временно́го шага. Дифференцируя (1.2) по времени и подставляя в (2.2), получим уравнение для определения давления p

$$
\begin{equation*}
A_{i m} \frac{\partial}{\partial x_{m}}\left(A_{i m} \frac{\partial p^{i+1}}{\partial x_{m}}-F_{i}^{l}+\frac{\partial u_{i}}{\partial t}\right)=0 \tag{2.3}
\end{equation*}
$$

Уравнение (2.3) решается методом последовательной верхней релаксации до заданной точности, определяемой выполнением уравнения неразрывности $A_{i m} \partial u^{l+1} / \partial x_{m}=0$ (подробно вид разностной схемы см. в $[2,3])$.

Ищется стационарное решение. Достижение стационарности определяется совпадением горизонтального потока импульса на нижней τ_{0} и верх-

ней τ_{1} границах. Проинтегрированное по x уравнение (1.1) при $i=1$ в: стационарном случае имеет вид

$$
\begin{gather*}
\tau=\tau^{\prime \prime}+\tau^{t}+\tau^{p}=\text { const } \\
\tau^{a}=-\rho\left\langle u\left[w-(1-\xi)\left(\frac{\partial \eta}{\partial t}+u \frac{\partial \eta}{\partial x}\right)\right]\right\rangle \\
\tau^{t}=-\rho\left\langle\overline{u^{\prime} w^{\prime}}-\frac{\partial \eta}{\partial x} \overline{u^{\prime} u^{\prime}(1-\xi)}\right\rangle \tag{2.4}\\
\tau^{p}=\left\langle\frac{\partial \eta}{\partial x} p(1-\xi)\right\rangle
\end{gather*}
$$

где τ^{a}, τ^{t} и τ^{p} - потоки импульса за счет адвекции, напряжений Рейнольдса и поля давления; уголковые скобки означают осреднение по x.

На поверхности $\xi=0$ в силу граничных условий (2.1), а также (3.1), (3.2) $\tau^{a}=0$ и, следовательно,

$$
\begin{equation*}
\tau_{0}=-\rho\left\langle\overline{u^{\prime} w_{0}^{\prime}}-\frac{\partial \eta}{\partial x} \overline{u^{\prime} u_{0}^{\prime}}+\frac{\partial \eta}{\partial x} p_{0}\right\rangle \tag{2.5}
\end{equation*}
$$

На верхней границе $\xi=1$ в силу (2.1) $\tau^{a}=\tau^{p}=0$ и потому

$$
\tau_{1}=-\rho\left\langle\overline{u^{\prime} w_{1}^{\prime}}\right\rangle=\rho v_{* 1}^{2}
$$

где $v_{* 1}$ - новое значение скорости трения. В расчетах совпадение τ_{0} и τ_{1}. выполнялось с точностью до 2%.
3. Численный эксперимент. Целью эксперимента являлось исследование различия обтекания неподвижной и подвижной поверхностей одинаковой геометрии и связи распределений волновых характеристик воздушного потока вблизи поверхности по вертикальной декартовой координате $z^{\prime}=z / h$ и вертикальной координате ξ (см. также $\left.[4,5]\right)$.

Рассматривались два варианта.
I. Неподвижная криволинейная поверхность

$$
\begin{equation*}
\eta(x)=a \cos (k x), \quad u_{0}=w_{0}=0 \tag{3.1}
\end{equation*}
$$

где a - амплитуда, $k=2 \pi / L$ - волновое число.
II. Подвижная поверхность, моделирующая ветровую гравитационную. волну на воде

$$
\begin{gather*}
\eta(x, t)=a \cos \varphi, \quad u_{0}=a \omega \cos \varphi, \quad w_{0}=a \omega \sin \varphi \\
\varphi=k x-\omega t, \quad \omega^{2}=g k, \quad \frac{\partial \eta}{\partial t}=w_{0}-\frac{\partial \eta}{\partial x} u_{0}+O(a k)^{2} \tag{3.2}
\end{gather*}
$$

Здесь последнее уравнение - кинематическое условие на поверхности, (1) - частота, $\omega / k=c$ - фазовая скорость. Отношение характерного времени подстройки пограничного слоя к волнам к характерному времени развития ветровых волн составляет 0,01 [2]. Таким образом, поле скоростей ветра в среднем всегда соответствует состоянию поверхности на любой стадии развития волн. Этот факт позволяет для исследования пограничного слоя над волнами на данной стадии их развития, характеризуемой отношением v_{*} / c, использовать «замороженный» волновой профиль (с постоянной во времени амплитудой a) и искать стационарное решение задачи.

Для этого используется замена переменных $x^{\prime}=x-c t$ и $\xi^{\prime}=\ln \left(\xi / \xi_{0}+1\right)$, позволяющая исключить из (1.1) производные по времени и сгущающая сетку с приближением к поверхности, где формируются поверхностные потоки импульса и энергии (ξ_{0} - параметр разрежения). Параметры поверхности и пограничного слоя имеют следующие значения: $a=6 \cdot 10^{-3}$ м, $c=0,8 \mathrm{~m} / \mathrm{c}, L=0,4 \mathrm{~m}, v_{*}=0,08 \mathrm{~m} / \mathrm{c}, z_{0}=4,4 \cdot 10^{-5} \mathrm{~m}, h=0,2 \mathrm{~m}$.

На фиг. 1 (неподвижная поверхность) и 2 (подвижная поверхность) показаны распределение по высоте в координатах z^{\prime} (пунктирные линии) и ξ (сплошные линии) амплитуд и фаз волновых составляющих компонент скорости и давления. На нижней оси отложены нормированные амплитуды продольной скорости u / v_{*} (кривые 1), вертикальной скорости w / v_{*} (кривые 2), давления $m p / \rho v_{*}^{2}$ (кривые 3). Масштабный коәффициент m на фиг. 1 равен 0,1 , на фиг. $2-0,5$. На верхней оси отложены значения фаз в градусах. Кривые $4,5,6$ соответствуют фазам продольной и вертикальной скоростей и фазе давления. Характерной особенностью является совпадение распределений амплитуд п фаз вертикальной составляющей скорости и давления в координатах z^{\prime} и ξ. Этот факт позволяет

Фиг. 1

для получения экспериментальных поверхностных значений указанных характеристик над волнистой поверхностью проводить измерения в декартовой системе координат, используя неподвижные относительно уровня $z=0$ приборы, с экстраполяцией результатов на уровень $\xi=0$. Распределение амшлитуд горизонтальной волновой составляющей скорости характеризуется наличием резко выраженного максимума по ξ и минимума по z^{\prime}; последний связан с переходом фазы возмущений через 90°.

В случае распространения гравитационной волны отмечается наличие минимума в распределении амплитуд вертикальной составляющей скорости по координате z^{\prime}, отсутствующего в другом варианте. Количественные значения рассматриваемых характеристик в обоих вариантах различны.

При обтекании криволинейной поверхности создается сопротивление, создаваемое касательными напряжениями Рейнольдса и корреляцией поверхностного давления с наклоном поверхности (см. формулу (2.5)); последнее известно как сопротивление формы и отсутствует при обтекании плоской поверхности. Коэффициент сопротивления формы $\tau_{0}{ }^{p} / \tau_{0}$, где $\tau_{0}{ }^{p}$ и τ_{0} определяются соотношениями (2.4), (2.5) на $\xi=0$, составляет в расчетах соответственно 10 и 6%. Проинтегрируем уравнение (1.1) при $i=1$ по x и ξ

$$
\int_{0}^{1} \frac{\partial}{\partial t}\langle u H\rangle d \xi=\tau_{1}-\tau_{0}{ }^{t}-\tau_{0}{ }^{p}
$$

При обтекании плоской поверхности $\tau_{0}{ }^{p}=0, \tau_{1}=\tau_{0}{ }^{t}=\rho v_{*}{ }^{2}$. При обтекании криволинейной поверхности возникает сопротивление формы, определяемое членом $\tau_{0}{ }^{p}>0$, что ведет к уменьшению средней скорости и увеличению τ_{1}. Коэффициент сопротивления пограничного слоя $\tau_{1} / \rho u_{1}{ }^{2}$ при обтекании криволинейной поверхности больше, чем при обтекании плоской поверхности; в расчетах превышение составляет соответственно 8 и 4%.

Фиг. 2
В случае движения поверхности $u_{i 0}=u_{i 0}(x, t)$ к ней направлен поток энергии

$$
\begin{equation*}
\Pi=-\left\langle p_{0} \frac{\partial \eta}{\partial t}\right\rangle+\left\langle\tau_{0}{ }^{{ }^{\prime}}\left(u_{0}-w_{0} \frac{\partial \eta}{\partial x}\right)\right\rangle \tag{3.3}
\end{equation*}
$$

Основная часть потока энергии определяется первым членом справа в потока энергии на верхней границе пограничного слоя τ, u_{1} около 4% однако именно за счет него происходит рост ветровых гравитационных волн.

ЛИТЕРАТУРА

1. Монин А. С., Яглом А. М. Статистическая гидромеханика. Ч. 1. М.: Наука, 1965. 639 с.
2. Chalikov D. V. The numerical simulation of wind-wave interaction.- J. Fluid Mech., 1978, v. 87, pt 3, p. 561-582.
3. Макин B. К. Поле ветра над волнами.- Океанология, 1979, т. 19, № 2, с. $206-212$.
4. Макин В. К., Чаликов Д. В. Численное моделирование структуры воздушного потока над волнами.- Изв. АН СССР. Физнка атмосферы и океана, 1979, т. 15, № 3 . с. 292-299.
5. Макин В. К., Панченко Е. Г. Распределение приповерхностного давления на волнистой поверхности.- Изв. АН СССР. Физнка атмосферы и океана, 1983, т. 19, № 10, с. 1098-1101.
Ленинград
