УДК 532.517.4

ВЗАИМОДЕЙСТВИЕ ТУРБУЛЕНТНОЙ СТРУИ И СПУТНОГО ОГРАНИЧЕННОГО ПОТОКА НЕСЖИМАЕМОЙ ЖИДКОСТИ

СОЛОПОВ в. А.

Приведены результаты исследования течения, индуцированного осесимметричной турбулентной струей в потоке коаксиального круглого кашала при различных параметрах спутности потока $0,16 \leqslant m<1$ и отношениях радиусов $2,5 \leqslant f \leqslant 30,9$.

Задача решается при помощи e - L-модели турбулентности [1, 2]. Отличие расчет. ной схемы данной работы от обычной для пограничных слоев, струй, следов заключается в том, что давление p считается неизвестным и определяется заданием краевых условий для радиальной компоненты скорости и поперечного градиента продольной компоненты скорости на обеих границах.

На основании расчетов и экспериментальных данных [3, 4] получены обобщенные зависимости, позволяющие оценить характеристики турбулентности осесимметричной струи в ограниченном спутном потоке, когда давление переменно вдоль те-

1. Постановка задачи. Рассмотрим смесительное устройство, состоящее в общем случае из системы плотно упакованных струй, вытекающих из соосных трубок, по внешнему и внутреннему контурам которых подаются смешивающиеся газы. При анализе перемешивания в таких системах возникает вопрос о влиянии геометрических размеров и отношения скоростей смешивающихся газов. Очень часто при этом необходимо знать уровень пульсационных скоростей на выходе смесительного устройства.

Ввиду сложности таких течений ограничим рассмотрение одним әлементом с системы. При экспериментальном исследовании (см. например, [3, 4]) такой элемент моделируется струей, вытекающей со скоростью $u\left(x_{0}, 0\right)$ из насадка, заканчивающегося соплом радиуса r_{1} в соосный ноток со скростью $u\left(x_{0}, r_{2}\right)$ аэродинамической трубы радиуса r_{2}. Струя смешивается с потоком трубы так, что начальная неравномерность продольной компоненты скорости в радиальном направлении постепенно уменьшается и в некотором сечении $x=l$ скорость на оси приближается к среднерасходной скорости $\langle u\rangle$.

Необходимость пропустить расход струи в дополнение к постоянному расходу аэродинамической трубы приводит к переменности давления вдоль течения в зависимости от соотношения радиусов $f=r_{2} / r_{1}$. Действительно, величина среднерасходной скорости (если плотность струи и спутного потока одинакова)

$$
\langle u\rangle=\frac{2}{\langle\rho\rangle r_{2}^{2}} \int_{0}^{r_{2}} \rho\left(x_{0}, r\right) u\left(x_{0}, r\right) r d r \approx\left[u\left(x_{0}, 0\right) f^{-2}+u\left(x_{0}, r_{2}\right)\left(1-f^{-2}\right)\right]
$$

тем более отличается от скорости спутного потока $u\left(x_{0}, r_{2}\right)$, чем меньше f. Если значения f достаточно велики, так что $\langle u\rangle \rightarrow u\left(x_{0}, r_{2}\right)$ и струя распространяется как в неограниченном спутном течении, ее параметры могут зависеть от соотношения скоростей $m=u\left(x_{0}, r_{2}\right) / u\left(x_{0}, 0\right)$. Поэтому, ттобы моделировать смешение струи с помощью трубного эксперимента,

необходимо в первую очередь количественно учитывать влияние параметров f и m.

Сак как радиальные компоненты средней скорости $v(x, r)$ малы по сравнению с продольными $u(x, r)$, а $\partial p / \partial x \sim \rho u \partial u / \partial x, \partial p / \partial r \sim \rho v \partial v / \partial r$, то в первом приближении можно считать, что давление p есть лишь функция от x и не зависит от r. Вследствие того, что радиальное изменение компонент средних скоростей струи в спутном потоке значительно больше цродольного, можно использовать приближения пограничного слоя.

Система уравнений Рейнольдса, неразрывности, энергии e и интегрального масштаба $L=\sqrt{2 \lambda}$ турбулентности для струи несжимаемой жидкости в спутном потоке имеет вид

$$
\begin{gather*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial r}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{1}{r} \frac{\partial}{\partial r}\left[(\nu+\varepsilon) r \frac{\partial u}{\partial r}\right] \tag{1.1}\\
\frac{\partial(r u)}{\partial x}+\frac{\partial(r v)}{\partial r}=0 \tag{1.2}\\
u \frac{\partial e}{\partial x}+v \frac{\partial e}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(D r \frac{\partial e}{\partial r}\right)+\varepsilon\left(\frac{\partial u}{\partial r}\right)^{2}-\omega \tag{1.3}\\
u \frac{\partial \lambda}{\partial x}+w \frac{\partial \lambda}{\partial r}=\frac{v}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \lambda}{\partial r}\right)-0,075 \frac{\varepsilon \lambda}{e}\left(\frac{\partial u}{\partial r}\right)^{2}+0,2 \frac{\omega L^{2}}{e} \tag{1.4}\\
\varepsilon=\alpha\left(1+\frac{\zeta^{2}}{4}\right) \sqrt{e} L, \quad \zeta=\frac{L}{e} \frac{\partial e}{\partial r}, \quad D=v+0,4 \sqrt{e} L \tag{1.5}\\
w=v+\frac{v}{2 \lambda} \frac{\partial \lambda}{\partial r}-\frac{v+D}{e} \frac{\partial e}{\partial r}
\end{gather*}
$$

Здесь x, r - оси цилиндрической системы координат, v и ε - соответственно коәффициенты молекулярной и турбулентной кинематической вязкости, ρ-плотность жидкости, D - диффузия энергии турбулентности.

В данной работе для описания осесимметричного струйного перемешивания в последнем члене правой части уравнения для масштаба турбулентности (1.4) по сравнению с [1] опущено слагаемое $0,2 L^{2} / \eta^{2} \varphi\left(L^{2} / \eta^{2}\right) \omega L^{2} / e$, поскольку при истечении струи в спутный поток естественно предположить, что твердая поверхность удалена вдоль оси r на бесконечность $(\eta \rightarrow \infty)$.

Соотношения (1.5) отличаются от формул работы [1] отсутствием множителя, учитывающего влияние твердой поверхности на вязкость и коэффициент диффузии.

Для определения α употребляется следующая кусочно-гладкая функция:

$$
\begin{gather*}
\alpha=x_{1}\left(0,14+0,9 x_{1}-9 / 8 x_{1}{ }^{2}\right) \quad\left(0<x_{1} \leqslant 0,4\right) \\
\alpha=0,32 x_{1} \quad\left(0,4<x_{1} \leqslant 0,77\right), \\
\alpha=0,32 x_{1}-0,588\left(x_{1}-0,77\right)^{2} \quad\left(0,77<x_{1} \leqslant 1,042\right) \tag{1.6}\\
\alpha=0,29 \quad\left(x_{1}>1,042\right), \quad x_{1}=\sqrt{e} /(L|\partial u / \partial r|)
\end{gather*}
$$

Диссипация энергии турбулентности вычислялась по формуле, предложенной в [1]

$$
\begin{gather*}
\omega=v \psi \varphi_{1} e / L^{2}, \quad \varphi_{1}=\left(1+\xi^{2} / 4\right) / \sqrt{\left(1+2,5(\partial L / \partial r)^{4}\right.} \\
\psi=3,93+r_{T} / 12,325 \quad\left(0<r_{T}<12,325\right) \tag{1.7}\\
\psi=0,4 r_{T} \quad\left(r_{T} \geqslant 12,325\right), \quad r_{T}=\sqrt{e} L / v
\end{gather*}
$$

Граничные условия на оси струи $r=0$ и на верхней границе $r=r_{2}$ (по-

граничным слоем на стенке трубы пренебрегаем) задаются в виде

$$
\begin{equation*}
\frac{\partial u(x)}{\partial r}=\frac{\partial e(x)}{\partial r}=\frac{\partial L(x)}{\partial r}=v(x)=0 \tag{1.8}
\end{equation*}
$$

Для устранения влияния пограничного слоя, сходящего со стенок сопла, на распределение средней скорости начало координат бралось на некотором расстоянии от среза сопла, где $u\left(x_{0}, 0\right) x_{0} / v=350000$.

Для продольной компоненты средней скорости в начальном сечении $x=x_{0}$ использовалось следующее кусочно-гладкое распределение:

$$
\begin{gather*}
u\left(x_{0}, r\right)=\varphi_{2}\left[u\left(x_{0}, 0\right)-u\left(x_{0}, r_{2}\right)\right]+u\left(x_{0}, r_{2}\right) \tag{1.9}\\
\varphi_{2}=1\left(0<r^{\circ} \leqslant k_{1}\right), \varphi_{2}=1-k_{4}\left(k_{1}-r^{\circ}\right)^{2} \quad\left(k_{1}<r^{\circ} \leqslant k_{2}\right) \\
\varphi_{2}=k_{4}\left(r^{\circ}-k_{3}\right)^{2} \quad\left(k_{2}<r^{\circ} \leqslant k_{3}\right), \quad \varphi_{2}=0 \quad\left(k_{3}<r^{\circ} \leqslant f\right) \tag{1.10}\\
r^{\circ}=r / r_{1}, \quad k_{1}=0,846, \quad k_{2}=1, \quad k_{3}=2-k_{1}, \quad k_{4}=1_{2}\left(k_{2}-k_{1}\right)^{-2}
\end{gather*}
$$

Сглаживание согласно (1.10) ступенчатообразной ($\varphi_{2}=1$ в формуле (1.9), если $0 \leqslant r^{\circ}<1$, и $\varphi_{2}=0$ при $1 \leqslant r^{\circ} \leqslant f$) функции проводилось, чтобы избежать счетных погрешностей. Масштаб турбулентности на оси $L\left(x_{0}, 0\right)$ в начальном сечении был выбран равным $r_{1}\left(u\left(x_{0}, 0\right) r_{1} / \nu=36800\right)$, а распределение по r вычислялось из соотношения $u\left(x_{0}, r\right) L\left(x_{0}, r\right) / v=36800$. Энергия турбулентности в начальном сечении вычислялась из соотношения $\gamma e\left(x_{0}, r\right) / u\left(x_{0}, r\right)=0,145$. При таком выборе число $r_{T}\left(x_{0}, r\right)=$ const. Варьировались радиус трубы r_{2} и скорость $u\left(x_{0}, r_{2}\right)$, а значения r_{1} и $u\left(x_{0}, 0\right)$ оставались неизменными.

Как показали расчеты, от выбора начальной энергии и масштаба турбулентности на оси поведение решения для осевой скорости зависиг лишь на переходном участке; на основном участке струи распределение осевой скорости вдоль течения сильно зависит от параметров m, f и слабо - от начальной энергии и масштаба турбулентности. Поэтому в данной работе варьировались параметры m, f при одних и тех же начальных значениях для энергии и масштаба турбулентности на оси.

Конечно-разностная схема для уравнений (1.3) п (1.4) та же, что и в [1]. Отличия от работы [1] заключаются в начальных (1.9) и граничных условиях (1.8), а такЖе в процедуре вычисления давления $p(x)$ и компонент скорости $u(x, r)$ и $v(x, r)$. Уравнения (1.1), (1.2) после подстановки конечных разностей вместо производных порождают систему линейных алгебраических уравнений, представленных в виде, удобном для использования метода прогонки. Искомые функции представляются следующим образом:

$$
\begin{equation*}
u_{n-1}=F_{n-1} u_{n}+G_{n-1}+M_{n-1} p, \quad v_{n}=S_{n} u_{n}+Q_{n}+R_{n} p \tag{1.11}
\end{equation*}
$$

Здесь $n=1,2,3, \ldots, N$ - число точек поперек течения. Прогоночные коэффидиенты F, G, M, S, Q, \dddot{R} определяются рекуррентными соотношениями подобно форимулам известного метода скалярной прогонки для случая неявных схем. В [1] прогоночные коэффициенты M, R равны нулю.

С учетом граничных условий (1.8) и уравнений (1.11), когда $r \rightarrow r_{2}$, получается система алгебраических уравнений для определения u_{N} и p_{N} в каждом сечении по x.
2. Ревультаты расчетов. Интегрирование системы уравнений (1.1)(1.4) при указанных выше начальных и граничных условиях проводилось в следующем диапазоне определяющих параметров задачи: $0,16 \leqslant m<1$ и
$2,5 \leqslant f \leqslant 30,9$.

Экспериментально в [4] показано, что важным параметром при смешении осесимметричной струи в потоке коаксиального круглого канала является критерий Крайя - Курте

$$
\begin{equation*}
C_{t}=\left[\frac{\pi r_{2}^{2}}{Q^{2}} \iint_{s}\left(u^{2}+\frac{p}{\rho}\right) d s\right]^{-1 / 2} \tag{2.1}
\end{equation*}
$$

Здесь $s=\pi r_{2}{ }^{2}, Q=s\langle u\rangle$ - полный расход. Критерий C_{t} является безраз-

Фиг. 1

Фиг. 2

мерным параметром подобия, характеризующим сумму количества движения и силы давления в поперечном сечении потока. Беккером (см. дискуссию, напечатанную после статьи [3]) на основании физических соображений дана оценка (2.1) в виде

$$
C_{t}=m f\left(1-f^{-2}\right)^{1 / 2}(1-m)^{-1 / 2}
$$

На фиг. 1 представлены результаты расчетов данной работы по изменению безразмерной осевой скорости $U^{\circ}=[u(x, 0)-\langle u\rangle] /\left[u\left(x_{0}, 0\right)-\langle u\rangle\right]$ вдоль оси струи ($X=x / l$) при различных значениях параметра $C_{s}=C_{t} f$. Введение этого параметра позволяет в более общей форме представлять результаты расчета и эксперимента. По-видимому, критерий C_{s} является лучшей оценкой интегрального выражения (2.1) для данной задачи. Точки $1-3$ соответствуют значениям m, f п $C_{\mathbf{\iota}}$, равным $(0,84 ; 30,9 ; 2000)$, $(0,84$; $7,55 ; 118,5)$, (0,$21 ; 2,5 ; 1,3$). Логарифмические прямые на фиг. 1 аппроксимируют данные расчетов на основном участке струи. В статистическую обработку включаются все точки, вплоть до систематического отклонения на переходном участке.

Расчетные результаты данной работы и экспериментальные исследования [3] для осевой скорости U° при ее стремлении к среднерасходной на основном участке струи описываются с точностью до разброса уравнением $U^{\circ}=x^{*}$, где $\lg x^{*}=-n^{*} \lg X-1,3$.

Изменение параметров l / r_{1} и $n *$ при различных параметрах C_{s} показано на фиг. 2 , где нанесены расчетные значения n^{*} (2) данной работы и экспериментальные данные (4) работы [3]. Величина l / r_{1}-такое расстояние x / r_{1}, где $U^{\circ}=0,05$ (1 -расчет, 3 - эксперимент). Параметр $n^{* *}$ характеризует угол наклона прямых на фиг. 1.

Расчетное (1) и экспериментальное (2) изменения безразмерного давления $\Delta p^{\circ}=\left[p(x)-p\left(x_{0}\right)\right] /\left[p(l)-p\left(x_{0}\right)\right]$ вдоль оси струи представленына фиг. 3. Сравнение расчетных результатов данной работы и экспериментальных значений из работы [3] максимального давления $\Delta p_{m}=2 \mid p(l)-$ $-p\left(x_{0}\right) \mid / \rho\langle u\rangle^{2}$ при различных параметрах C_{s} показано на фиг. 3. Расчетный метод не учнтывает потери на трение, поэтому при сравнении с экспериментальными данными [3] производилась корректировка при помощиформулы Никурадзе

$$
\Delta p_{f}^{\circ}=C_{f} \frac{x}{d_{2}}, \quad C_{f}=0,0032+0,221\left(\frac{v}{\langle u\rangle d_{2}}\right)^{0,237}, \quad d_{2}=2 r_{2}
$$

Приведем оценку Δp_{m} ІІ Δp_{f} в диапазоне $x_{0} / d_{2} \leqslant x / d_{2} \leqslant l / d_{2}$, исследуемом в данной работе, для $m=0,1 ; f=3$. Для этого случая ($C_{s}=0,9$) на основе экспериментальных данных [3] $\langle u\rangle d_{2} / v=83000 ; C_{j}=0,0183 ; \quad l / d_{2}=10$; $\Delta p_{i}^{\circ}=\Delta p_{f} /\left(\rho\langle u\rangle^{2} / 2\right)=0,183 ; \Delta p_{m}=3,3$.

Видно, что влияние трения на распределение общего давления (Δp_{m} -
$-\Delta p_{f}{ }^{\circ}$) мало. Другой предельный случай имеет место, когда C_{s} велико и $\Delta p_{m} \rightarrow 0$. При этом влияние струи на распределение общего давления мало́ и давление изменяется только за счет трения, как при течении в трубе.

На фиг. 4 показаны расчетные (1) и экспериментальные значения (2) из работы [3] относительной величины энергии турбулентности $e^{\circ}=$ $=e(x, 0) / e\left(x_{m}, 0\right)$ вдоль оси струи (x_{m} - значение x, где энергия турбулентности на оси максимальна). Заметим, что в эксперименте измерялась лишь продольная компонента пульсационной скорости. Поэтому для оцен-

Фиг. 3

Фиг. 4

жи энергии турбулентности предполагалось равенство продольной, радиальной и окружной компонент пульсационной скорости на оси.

Сравнение расчетного (2) и экспериментального (3) изменения максимальной энергии турбулентности $e_{m}=1-\sqrt{e\left(x_{m}, 0\right)} / u\left(x_{0}, 0\right)$ от критерия C_{s} также показано на фиг. 4. Здесь же нанесены расчетные (1) и экспериментальные (4) значения x_{m} / r_{2} при различных C_{s}.

Расчетное распределение безразмерного масштаба турбулентности вдоль оси струи с точностью до разброса $\pm 5 \%$ подчиняется линейному закону $\left[L(x, 0)-L\left(x_{0}, 0\right)\right] /\left[L(l, 0)-L\left(x_{0}, 0\right)\right]=X$. Изменение максимального значения масштаба турбулентности на оси можно оценить на основании расчетов из соотношения $L(l, 0) / r_{1}=1,29 \lg C_{s}+1$.

Линии на фиг. 2-4 проведены в середине дорожки разброса данных расчета и эксперимента; они могут служить для оценки величин, представленных на этих графиках.

Несмотря на то что в окрестности среза сопла, из которого вытекает струя в спутный огранпченный поток, давление переменно не только вдоль, но и поперек течения, результаты расчетов с предположением о постоянстве давления поперек течения удовлетворительно согласуются с экспериментом на основном участке струи по всем параметрам потока.

Полученные результаты позволяют сделать вывод о приемлемости $e-L$-модели для расчета осесимметричных турбулентных течений с эмпирическими функциями для турбулентной вязкости, диссипации и дифофузии, которые были определены в работе [1] из анализа экспериментальных данных в плоских турбулентных потоках. Расчет по данной методике значительно экономичней, чем решение полной системы уравнений Навье - Стокса.

В заключение автор благодарит Г. С. Глушко за кондтруктивное обсуждение результатов и полезные советы.

ЛИТЕРАТУРА

1. Г.ıуико Г. С. Некоторые особенности турбулентных течений несжимаемой жидкости с поперечным сдвигом.- Изв. АН СССР. МЖГ, 1971, № 4, с. 128-136.
2. Глуико $Г$. С., Солопов В. А. Процесс переноса тепла в турбулентных течениях.Изв. АН СССР. МЖГ, 1972, № 4, с. 18-24.
3. Razinsky E., Brighton J. A. Confined jet mixing for nonseparating conditions.Trans. ACME, Ser. D, J. Basic Engineering, 1971, v. 93, № 3. (Рус. перев.: Разински, Брайтон. Смешение струй в условиях безотрывного течения в трубе.- Тр. амер. о-ва инж.-мех. Теор. основы инж. расчетов, 1971, т. 93, ․․ 3, с. 1-14.)
4. Curtet R., Ricou F. P. On the tendency to self-preservation in axisymmetric ducted Jets.- Trans. ACME, Ser. D, J. Basic Engineering, 1964, v. 86, № 4. (Рус. перев.: Курте, Рико. О тенденции к автомодельности в осесимметричных струях в трубах.- Тр. амер. о-ва инж.-мех. Теор. основы инж. расчетов, 1964, т. 86, № 4, c. 159-172.)

Москва
Поступила в редакцию
9.VII. 1985

