ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ КРУГОВОГО ЦИЛИНДРА, ПОКРЫТОГО ТОНКИМ СЈОЕМ МАГНИТНОЙ ЖИДКОСТИ

ПОЛЕВИКОВ В. К.

Для уменьшения сопротивления твердых тел в потоке вязкой жидкөсти предлагается наносить на обтекаемую поверхность слой магнитной жидкости, которая может удерживаться с помощью магнитного поля, играя роль своеобразной смазки между внешним течением и телом [1, 2]. В [1] предпринималось теоретическое исследование гидродинамического сопротивления цилиндрического проводника с током, покрытого равномерным слоем магнитной жидкости, при малых числах Рейнольдса. Чтобы ушростить уравнения движения, для набегающего потока вводилось приближение Озеена, а для магнитной жидкости - приближение Стокса [3]. В рамках этого подхода найдено точное аналитическое решение, из которого следует, что при числах Рейнольдса $\mathrm{Re}<1$ сопротивление цилиндра может значительно уменьшиться, если вязкость его магнитожидкостной оболочки много меньше вязкости потока.

Основная цель настоящей работы - на примере той же задачи выяснить, как магнитожидкостное покрытие влияет на гидродинамическое сопротивление при числах Рейнольдса $1 \leqslant \mathrm{Re} \leqslant 10^{2}-10^{3}$, т. е. в условиях отрывного течения. Упрощения, связанные с пренебрежением нелинейными инерционными членами в уравнении Навье - Стокса, в этом случае неприемлемы, так что получить решение можно только численными методами.

1. Постановка задачи. Рассмотрим бесконечный поток вязкой немагнитной жидкости, движущийся прямолинейно с постоянной скоростью U, обтекая в поперечном направлении длинный цилиндрический проводник конечного радиуса R. На твердую поверхность цилиндра нанесем слой магнитной жидкости, не смешивающейся с жидкостью внешнего течения. Постоянный ток I, текущий по проводнику, создает неоднородное магнитное поле, которое препятствует сносу магнитожидкостного покрытия.

Если $U=0$, а сила тока I достаточно велика, граница раздела жкдкостей принимает форму кругового цилиндра радиуса $a>R$, коаксиального с проводником [2]. Ясно, что с ростом скорости U круговая форма будет искажаться. Согласно [1], этой деформацией можно пренебречь, если магнитостатическое давление в слое значительно превышает динамическое давление в набегающем потоке, т. е. выполняется условие

$$
\begin{equation*}
\operatorname{Re} \ll I \bar{\mu} \overline{0_{0} \chi} / 2 \pi \delta v_{2} / \overline{\rho_{2}} \tag{1.1}
\end{equation*}
$$

где μ_{0} - магнитная проницаемость вакуума, χ - магнитная восприимчивость покрытия, ρ_{2} и ν_{2} - плотность и кинематическая вязкость потока, $\delta=a / R, \operatorname{Re}=U R / v_{2}$ - число Рейнольдса. Если, к примеру, взять $I=100 \mathrm{~A}$, $\delta=1,1, \rho_{2}=10^{3} \mathrm{\kappa r} / \mathrm{m}^{3}, v_{2}=10^{-6} \mathrm{~m}^{2} / \mathrm{c}, \chi=2$, то условие (1.1) справедливо при $\mathrm{Re}<725$. Так что вшолне реальна ситуация, когда поверхность магнитной жидкости остается круговым цилиндром даже при Re порядка 100. В әтом случае магнитное поле не оказывает влияния на движение в кольцевом слое - его роль сводится к фиксации круговой границы раздела [1].

Пусть для определенности поток движется в торизовтальном направлении слева направо. Считаем задачу плоской, симметричной и стацио-

нарной и введем систему полярных координат с полюсом на оси цилиндра. Стационарные уравнения движения обеих жидкостей, приведенные к функции тока и завихренности, различаются лишь коэффициентами кинематической вязкости. Запишем их сразу в безразмерном виде, пользуясь при необходимости индексами 1 и 2 соответственно для магнитной и немагнитной жидкостей

$$
\begin{gather*}
\frac{\partial \psi_{1}}{\partial \theta} \frac{\partial \varphi_{1}}{\partial r}-\frac{\partial \psi_{1}}{\partial r} \frac{\partial \varphi_{1}}{\partial \theta}=\frac{\mu}{\lambda \operatorname{Re}}\left[\frac{\partial}{\partial r}\left(r \frac{\partial \varphi_{1}}{\partial r}\right)+\frac{1}{r} \frac{\partial^{2} \varphi_{1}}{\partial \theta^{2}}\right] \tag{1.2}\\
\frac{\partial \psi_{2}}{\partial \theta} \frac{\partial \varphi_{2}}{\partial r}-\frac{\partial \psi_{2}}{\partial r} \frac{\partial \varphi_{2}}{\partial \theta}=\frac{1}{\operatorname{Re}}\left[\frac{\partial}{\partial r}\left(r \frac{\partial \varphi_{2}}{\partial r}\right)+\frac{1}{r} \frac{\partial^{2} \varphi_{2}}{\partial \theta^{2}}\right] \tag{1.3}\\
\frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)+\frac{1}{r} \frac{\partial^{2} \psi}{\partial \theta^{2}}+\varphi r=0 \tag{1.4}\\
v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad v_{\theta}=-\frac{\partial \psi}{\partial r} \tag{1.5}
\end{gather*}
$$

Здесь ψ - функция тока, φ - завихренность, r и θ - полярные координаты, $\mu=\eta_{1} / \eta_{2}$ - отношение динамических вязкостей, $\lambda=\rho_{1} / \rho_{2}$ - отношение плотностей, v_{r} и v_{θ}-компоненты скорости. Переход от безразмерных переменных к размерным (отметим последние штрихами) осуществляется по формулам

$$
\begin{gathered}
r^{\prime}=r R, \quad v_{r}^{\prime}=v_{r} U, \quad v_{\theta}^{\prime}=v_{\theta} U \\
\psi^{\prime}=\psi U R, \quad \varphi^{\prime}=\varphi U / R
\end{gathered}
$$

Будем считать границу раздела круговой. Тогда движение магнитной жидкости описывается уравнениями (1.2), (1.4) в кольце $1 \leqslant r \leqslant \delta$, а внешнее течение - уравнениями (1.3), (1.4) в области $\delta \leqslant r \leqslant \infty$. Предполагая решение симметричным, изменение полярного угла ограничим интервалом $0 \leqslant \theta \leqslant \pi$.

На твердой поверхности примем условия прилипания $v_{r}=v_{\theta}=0$; при $\theta=0, \pi$ - условия симметрии $v_{\theta}=0, \partial v_{r} / \partial \theta=0$; на достаточно большом расстоянии, $r=r_{\infty}$,- отсутствие возмущений в вектор скорости $v_{r}=\cos \theta, v_{\theta}=$ $=-\sin \theta$, из которых, согласно (1.4) и (1.5), имеем

$$
\begin{gather*}
\psi=0, \quad \frac{\partial \psi}{\partial r}=0 \quad(r=1) \tag{1.6}\\
\psi=0, \quad \varphi=0 \quad(\theta=0 ; \pi) \tag{1.7}\\
\psi=r_{\infty} \sin \theta, \quad \varphi=0 \quad\left(r=r_{\infty}\right) \tag{1.8}
\end{gather*}
$$

На поверхности раздела потребуем непрерывности скорости, непроницаемости поверхности, равенства касательных напряжений, что с помощью (1.4), (1.5) можно записать в виде

$$
\begin{equation*}
\psi=0, \quad \frac{\partial \psi_{1}}{\partial r}=\frac{\partial \psi_{2}}{\partial r}, \quad \mu\left(\varphi_{1}+\frac{2}{\delta} \frac{\partial \psi_{1}}{\partial r}\right)=\varphi_{2}+\frac{2}{\delta} \frac{\partial \psi_{2}}{\partial r} \quad(r=\delta) \tag{1.9}
\end{equation*}
$$

Уравнения (1.2) - (1.4) вместе с краевыми условиями (1.6)-(1.9) образуют стационарную математическую модель задачи. Определяющими параметрами являются: число $\operatorname{Re}=U R / v_{2}$ и отношения $\mu=\eta_{1} / \eta_{2}, \lambda=\rho_{1} / \rho_{2}, \delta=$ $=a / R$.

Для плоской задачи обтекания цилиндра в случае $\mathrm{Re}<100$ стационарная постановка вполне уместна, так как в указанном диапазоне чисел Рейнольдса нестационарное численное решение с течением времени имеет тенденцию устанавливаться [4-6]. Главное преимущество стационарного подхода - в возможности применения специальных итерационных методов, позволяющих многократно сократить время решения по сравнению с методом установления. Среди работ, выполненных в рамках этого подхода по обтеканию твердого цилиндра, отметим [7, 8]. В первой из них рассмотрен интервал $0,5 \leqslant R e \leqslant 250$, а второй $-2,5 \leqslant R e \leqslant 50$.

Сила сопротивления цилиндра радиуса a, отнесенная к единице длины цилиндра, определяется формулой [3]

$$
W^{\prime}=\frac{2 \eta_{2}{ }^{2} \delta \operatorname{Re}}{\rho_{2} R} \int_{0}^{\pi}\left[2 \frac{\partial v_{2 r}}{\partial r} \cos \theta+\left(\frac{\partial p_{2}}{\partial \theta}-\frac{\partial v_{2 \theta}}{\partial r}+\frac{v_{2 \theta}}{\delta}\right) \sin \theta\right]_{r=0} d \theta
$$

где p_{2} - безразмерное давление в потоке ($p_{2}=p_{2}{ }^{\prime} R / U \eta_{2}$). Применяя интегрпрование по частям и учитывая, что на границе раздела азимутальная составляющая уравнения Навье - Стокса представима в виде

$$
\frac{\partial p_{2}}{\partial \theta}=-\frac{\operatorname{Re}}{2} \frac{\partial v_{2 \theta}^{2}}{\partial \theta}+\delta \frac{\partial^{2} v_{2 \theta}}{\partial r^{2}}+\frac{1}{\delta} \frac{\partial^{2} v_{2 \theta}}{\partial \theta^{2}}+\frac{\partial v_{2 \theta}}{\partial r}-\frac{v_{2 \theta}}{\delta}
$$

после несложных преобразований получим следующее выражение для безразмерной силы сопротивления цилиндра, нокрытого кольцевым слоем магнитной жидкости:

$$
\begin{equation*}
W=W^{\prime} \frac{\rho_{2} R}{\eta_{2}{ }^{2}}=\delta \operatorname{Re} \int_{0}^{\pi}\left[\operatorname{Re}\left(\frac{\partial \psi_{2}}{\partial r}\right)^{2} \cos \theta+2 \delta^{2} \frac{\partial}{\partial r}\left(\frac{\varphi_{2}}{r}\right) \sin \theta\right]_{r=0} d \theta \tag{1.10}
\end{equation*}
$$

Если $W_{0}\left(\mathrm{Re}_{0}\right)$ - сопротивление цилиндра без покрытия, соответствующее $\mathrm{Re}=\mathrm{Re}_{0}$, то имеет место простая зависимость

$$
\begin{equation*}
W_{0}\left(\operatorname{Re}_{0}\right)=\delta \lim W\left(\operatorname{Re}_{0} / \delta\right) \tag{1.11}
\end{equation*}
$$

Решение сформулированной задачи находилось чқсленно по методу сеток. В области $\delta \leqslant r \leqslant r_{\infty}$ сетка по радиусу выбиралась неравномерной, в остальных случаях равномерной. Для уравнений (1.2)-(1.4) составлялась консервативная монотонная разностная схема, имеющая второй порядок аппроксимации на регулярном шаблоне и первый - на нерегулярном. Она является простым обобщением схемы, приведенной в [9], и на равномерной сетке с ней совпадает. Схема обладает высокими стабилизирующими свойствами и обеспечивает выполнение в сеточной области физических законов сохранения. Последнее означает, что она более правильно отражает качественные особенности решения, чем обычные неконсервативные схемы.

Завихренность на твердой стенке задавалась приближенным условшем Вудса [9], на линии раздела - из условий сопряжения (1.9), аппроксимированных с вторым порядком с учетом уравнения (1.4). Во всех остальных случаях граничные значения для завихренности и фувкции тока определялись по яввым формулам, имеющимся среди (1.6) - (1.9)

Для решения полученной разностной задачи применялся итерационно-релаксационный метод зейделевского типа с автоматическим выбором параметров релаксации [10].

Расчеты выполнялись на машине БЭСМ-6. Результаты, представленные в работе, получены при $r_{\infty}=20$, числе разбиений сетки $k=40$ по углу $\theta, m=10$ по радиусу в слое покрытия, $n=20$ по радиусу в области внешнего кольда. Для контроля точности иабранные варианты задачи пересчитывались при $r_{\infty}=10$ и $40, m=5$ и $20, n=$ $=30$ и 40 .
2. Результаты. Все расчеты производились при $\delta=1,1$ и $\lambda=1$. Относительная вязкость μ и число Рейнольдса подробно варьировались в диапазонах $0,01 \leqslant \mu \leqslant 10,1 \leqslant R e \leqslant 100$; в отдельных случаях рассматривались также $\mu=10^{2}, 10^{3}, \operatorname{Re}=0,1 ; 0,5 ; 10^{3}$.

Фигуры 1-3 показывают, что нанесение на поверхность цилиндра слоя магнитной жидкости может существенно изменить структуру обтекающего потока. На фиг. 1 изображена картина течения как внутри слоя, так и вне его при $\operatorname{Re}=100, \mu=0,01$. На оси возвратного движения магнитной жидкости, отмеченной точкой, $\psi=-0,02$; близлежащая к ней линия тока соответствует $\psi=-0,01$: Граф̆ик, приведенный на фиг. 2, описывает влияние параметра вязкости μ на величину $A_{*}=\lg \mathrm{Re}_{*}$, где Re_{*} - критическое значение числа Рейнольдса, отвечающее возникновению отрывного вихря за цилиндром; заштрихована область безотрывного течения. О величине зоны отрыва позволяет судить отрывной угол θ_{s} - азимутальная

координата точки отрыва на линии раздела. Зависимость θ_{s} от параметров μ и $A=\lg \mathrm{Re}$ отражена на фиг. 3 .

Магнитожидкостное покрытие может служить эффективным стабилизатором внешнего потока. Возвратное движение, неизменно происходящее в кольцевом слое, способствует уменьшению перепада давления на поверхности раздела, тем самым ухудшая условия для появления и существования отрыва. Чем меньше вязкость оболочки, тем заметнее ее воздействие. Уменьшение μ вызывает рост критического числа Re_{*}, особенно стремительный при $\mu<1$, т. е. начало образования отрыва все более затягивается. В закритической области $\mathrm{Re}>\mathrm{Re}_{*}$ наблюдается затухание следа за цилиндром, вплоть до его полного исчезновения при достаточно малом μ. Любопытно, что в случае $\mu=0,01$ отрыв не происходит даже при $\mathrm{Re}=10^{3}$. По мере увеличения числа Рейнольдса темпы роста отрывного угла замедляются, однако при малых $\mu \theta$ у устанавливается раньше. Оказалось, что в случае маловязких покрытий повышение интенсивности потока лишь вначале приводит к увеличению зоны отрыва, а в дальнейшем как ширина, так и длина следа убывают. Это подтверждается графиком на фиг. 3 для $\mu=0,05$.

На фиг. 4 вычерчено семейство графиков, характеризующих интенсивность циркуляции на поверхности раздела $r=\delta$, показано распределение тангенциальной составляющей скорости v_{θ} на промежутке $0 \leqslant \theta \leqslant \pi$ при $\mathrm{Re}=100$. Положительные значения v_{θ} соответствуют зоне отрывного течения. Отметим, что максимальная скорость достигается на участке $\pi / 2<$ $<\theta<3 \pi / 4$; при $\mu \rightarrow 0$ точка максимума смещается к $\theta=\pi / 2$, при $\mu \rightarrow \infty-$ к $\theta=3 \pi / 4$. И увеличение числа Рейнольдса и уменьшение вязкости магнитной жидкости обеспечивают нарастание скорости на поверхности раздела. Причем она может значительно превышать скорость потока на «бесконечности», где $v=1$.

Выясним вопрос о влиянии магнитожидкостного покрытия на гидродинамическое сопротивление цилиндра. Для этого рассмотрим отношение

Фиг. 4

Фиг. 5
$x=W / W_{0}$, показывающее, во сколько раз изменяется сопротивление после нанесения покрытия. На фиг. 5 изображены графики зависимости x от числа Рейнольдса ($A=\lg \mathrm{Re}$) для разных μ. Поведение кривых отражает те перемены, которые происходят в структуре обтекающего потока. Наиболее значительное падение сопротивления имеөт место в области $\mathrm{Re}>3$, характеризующейся наличием отрывного вихря за твердым цилиндром $(\delta=1)$. Чем меньшей оказывается зона отрыва в результате наложения покрытия, тем сильнее падает сопротивление. Важно, что с ростом интенсивности движения әффект снижения сопротивления становится весомее. Хотя это касается главным образом малых значений μ, тенденция к уменьшению отношения x по мере нарастания Re заметна даже при $\mu=1$. Не исключено, что при более высоких числах Рейнольдса әффективными окажутся не только маловязкие покрытия. Конечно, переход в область высоких Re требует учета деформации границы раздела, однако кажется справедливым предположение, высказанное в работе [1], что при этом следует ожидать дополнительной потери сопротивления. Впрочем, исчерпывающий ответ на эти вопросы может дать только реальный әксперимент.

В заключение обсудим точность приведенных результатов. Сравнения с данными эксперимента [11], измеренными для $1 \leqslant \mathrm{Re} \leqslant 50$, показало, что вычисленные значения W_{0} превышают әкспериментальные на $5-12 \%$. По-вхдимому, это справедливо и для W, так как предпринятое варьирование шагов сетки и радиуса «бесконечности» r_{∞} почти никак не отразилось на величине отношения x. На фиг. 5 нанесены кружками значения x, вытекающие из аналитического решения [1] при $\operatorname{Re}=0,1$ п $\mu=10$; 1 ; 0,$5 ; 0,1 ; 0,01$ (сверху вниз). Сопоставляя их с численными результатами, находим хорошее количественное согласование лишь при $\mu \geqslant 1$. В области $\mu<1$ результаты расчета располагаются выше теоретических, а при $0,01 \leqslant \mu \leqslant 0,1$ они отличаются друг от друга весьма ощутимо. Вероятно, в уравнениях движения магнитной жидкости в әтом случае велика роль инерционных членов, которыми пренебрегалось в [1]. Свидетельством удовлетворительной точности численного решения может в какой-то степени служить тот факт, что появление следа за цилиндром без покрытия, происходящее при $3<\mathrm{Re}_{*}<4$, полностью соответствует данным [8]. В случае отсутствия оболочки обнаружено также согласие с работами $[4,5,7]$ относительно величины отрывного угла $\theta_{\text {。 }}$.

ЛИТЕРАТУРА

1. Краков M. С. Управление отрывом потока с помощью намагничивающейся жидкости. - Изв. АН СССР. МЖГ, 1984, № 3, с. 10-14.
2. Баштовой В. Г., Берковский Б. М., Вислович А. Н. Введение в термомеханику магнитных жидкостей. М.: ИВТАН, 1985. 188 с.
3. Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. Ч. 2. М.: Физматгиз, 1963. 728 с.
4. Thoman D. C., Szewczyk A. A. Time-dependent viscous flow over a circular cylinder. - Phys. Fluids, 1969, v. 12, № 12, p. 76-86.
5. Son J. S., Hanratty T. J. Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500. - J. Fluid Mech., 1969, v. 35, № 2, p. 369-386.
6. Гущин B. А. Численноө исследование обтекания тела конечного размера потоком несжимаемой вязкой жидкости. Журн. вычисл. математики и матем. физики, 1980, т. 20, № 5, с. 1333-1341.
7. Hamielec A. E., Raal J. D. Numerical studies of viscous flow around circular cylin-ders.- Phys. Fluids, 1969, v. 12, № 1, p. 11-17.
8. Dennis S. C. R., Chang G.-Z. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100.- J. Fluid Mech., 1970, v. 42, № 3, p. 471489.
9. Полевиков В. К., Фертман B. E. Исследование теплообмена через горизонтальный кольцевой слой магнитной жидкости при охлаждении цилиндрических проводников с током. - Магнитная гидродинамика, 1977, № 1, с. 15-21.
10. Полевиков $B .{ }^{\text {. }}$. Применение метода релаксации для решения стационарных разностных задач конвекции.- Журн. вычисл. математики и мат. физики, 1981,
т. 21 , № 1, с. 127-138.
11. Tritton D. J. Experiments on the flow past a circular cylinder at 'low Reynolds numbers. - J. Fluid Mech., 1959, v. 6, № 4, p. 547-567.
