УДК 536.25

ЭВОЛЮЦИЯ ПРОСТРАНСТВЕННЫХ СПЕКТРОВ ПРИ ПЕРЕХОДЕ ОТ ЛАМИНАРНОЙ КОНВЕКЦИИ К ТУРБУЛЕНТНОИ

БОГАТЫРЕВ Г. П., ЗИМИН В. Д.

Abstract

Экспериментально исследовались пространственные спектры термогравитационной конвекции при переходе от ламинарных режимов к турбулентным в подогреваемом снизу коротком горизонтальном цилиндре. По экспериментальным данным для каждого набора определяющих параметров задачи строился базис, удовлетворяющий условию диагональности корреляционной матрицы коэффициентов разложения профилей температуры в среднем горизонтальном сечении дилиндра. Испольвование таких базисов существенно упрощает описание области перехода. Покавано, что при возникновении турбулентного режима конвекции пространственный спектр кризисным образом расширяется.

В исследованиях перехода от ламинарной конвекции к турбулентной фиксируют внимание на изменениях во временны́х спектрах пульсаций температуры и скорости в некоторых точках пространства. Возникновение стохастических режимов конвекции сопровождается либо кризисным расширением пиков, соответствовавших периодическим колебаниям, либо кризисным ростом фона. В связи с кризисным характером таких переходов можно говорить, что дискретный спектр сменяется сплошным, хотя фоновая составляющая может присутствовать и в режимах регулярных конвективных колебаний.

Развитая турбулентная конвекция характеризуется не только хаотическим изменением полей температуры и скорости во времени, но и хаотическим изменением этих величин в пространстве. В связи с этим наряду с возникновением временно́й хаотичности при сохранении сравнительно простой структуры течения большой интерес представляет исследование әволюции пространственных спектров в области перехода от ламинарной конвекции к турбулентной.

В данной работе эти вопросы исследуются экспериментально на примере подогреваемой снизу замкнутой полости. Полость, заполненная дистиллированной водой, имела форму короткого горизонтального цилиндра диаметром $D=30,9$ мм, и длиной $d=4,7$ мм. На торцах цилиндра задавался однородный градиент температуры \mathbf{A}, направленный под углом α к вертикали. Для изменения α вся модель поворачивалась вокруг горизонтальной оси цилиндра. На диаметральной линии, которая проходит на равном расстоянии от торцов цилиндра и при $\alpha=0$ располагается горизонтально, с шагом 2,6 мм были расположены спаи 11 термопар. Подробное описание модели приведено в [1].

С помощью коммутирующего устройства термопары поочередно подключались к цифровому вольтметру Щ 68000 , информация с которого передавалась в ЭВМ. Время опроса всех термопар составляло 1,8 с, что примерно в 10 раз меньше характерного периода высокочастотных пульсаций для данной модели.

Стационарные режимы конвекции для $\alpha<12^{\circ}$ и числах Рэлея $R=$ $=g \beta v^{-1} \chi^{-1} A(d / 2)^{4}$ в диапазоне $0<R<70$ описаны в [2]. Обнаружено четыре типа стационарных движений, отличающихся друг от друга числом

конвективных ячеек. Вертикальный размер ячеек совпадает с вертикальным размером полости в месте их расположения. Внутри каждой ячейки завихренность сохраняет один и тот же знак, меняя его при переходе к соседним ячейкам. Профиль температуры на линии расположения термопар однозначно определяет тип стационарного движения.

В $[1,3]$ для анализа профилей температуры использовалась аналоговая схема, выполняющая преобразование Фурье по пространственным переменным в реальном времени. Это позволило исследовать временныө спектры амплитуд низших пространственных гармоник $\sin \left[\pi(n+1) D^{-1} x\right]$ в режимах стохастических колебаний [3].

В данном случае для каждого набора определяющих параметров R и α находилась корреляционная матрица $P_{n m}=\left\langle a_{n} a_{m}\right\rangle$ коәффициентов $a_{n}(t)$ в разложении профилей температуры по синусоидальным функциям

$$
\begin{equation*}
T=\sum_{n} a_{n}(t) s_{n}(x), \quad s_{n}=\sqrt{\frac{2}{D}} \sin \frac{\pi(n+1) x}{D} \tag{1}
\end{equation*}
$$

Установлено, что для всех режимов конвекции в исследованном диапазоне R п α матрица $P_{n m}$ недиагональна, т. е. коэффициенты $a_{n}(t)$ скоррелированы.

Статистическое описание исследуемых процессов существенно упрощается, если перейти от базиса $s_{n}(x)$ к новому функциональному базису $f_{n}(x)$, для которого коәффициенты разложения

$$
\begin{equation*}
T(x, t)=\sum_{n} b_{n}(t) f_{n}(x) \tag{2}
\end{equation*}
$$

не коррелируют: $\left\langle b_{n} b_{m}\right\rangle=R_{n m} \sim \delta_{n m}$.
Исходный базис $s_{n}(x)$ подвергался ортогональному преобразованию

$$
\begin{equation*}
f_{n}(x)=\sum_{m} Q_{n m} s_{m}(x) \tag{3}
\end{equation*}
$$

При этом коэффициенты a_{n} и матрица $P_{n m}$ преобразуются по формулам

$$
\begin{align*}
b_{n} & =\sum_{m} Q_{n m} a_{m} \tag{4}\\
R_{n m} & =\sum_{l k} Q_{n l} P_{l k} Q_{k m} \tag{5}
\end{align*}
$$

Матрица $Q_{n m}$ находится в результате решения задачи на собственныө значения

$$
\begin{equation*}
\sum_{m} P_{n m} Q_{k m}=\lambda_{k} Q_{k n} \tag{6}
\end{equation*}
$$

При этом матрица $R_{n m}$ становится диагональной. Коэффициенты b_{n} являются амплитудами пространственных мод $f_{n}(x)$, которые далее будем называть собственными.

Применение описанной процедуры к стационарному движению приводит к матрице $P_{n m}=a_{n} a_{m}$. Все собственные числа такой матрицы, за псключением одного: $\lambda_{h}=b_{k}{ }^{2}$, равны нулю. Индекс k определяет число ячеек, соответствующее данному типу стационарного движения. Этому собственному числу соответствует базисная функция f_{h}, которая дает аппроксимацию стационарного профиля температуры $T(x)$ конечным числом членов ряда (1). Базисная функция f_{k} зависит от R и α. Независимо от числа отсчетов на оси x или, что то же самое, от числа рассматриваемых членов в разложении (1), фазовое пространство системы при переходе к бази-

су f_{n} становится одномерным, а состояние системы изображается точкой на расстоянии b_{k} от начала координат.

Удобство использования базиса f_{n} для описания нестационарных режимов конвекции определяется тем, насколько сокращается размерность фазового пространства при переходе от s_{n} к f_{n}. На фиг. 1 приведены спектры $\left\langle a_{n}{ }^{2}\right\rangle$ и $\left\langle b_{n}{ }^{2}\right\rangle$ для $R=70$ п $\alpha=30^{\prime}$. За единицу пзмерения амплитуд a_{n} и b_{n} принята величина $A D$. Нижняя граница диаграммы выбрана

Фиг. 2 на уровне 10^{-5}, соответствующем уровню шумов в отсутствие конвекции. Этот уровень определялся при $\alpha=0$. Как видно из диаграммы, разложение (1) дает девять значимых коэффициентов, тогда как собственных мод всего две. Доминирующей является четвертая мода.

В данных экспериментах наблюдались стационарные режимы конвекции, колебательные режимы с доминирующей собственной модой и режимы стохастических колебаний с пироким пространственным спектром. Карта режимов для $R<115$ и $\alpha<12^{\circ}$ приведена на фиг. 2. Цифрами 1-4 обозначены области существования стационарных движений. Число конвективных ячеек совпадает с порядковым номером области. Колебательные режимы с доминирующей пространственной модой n обозначены $n k$. Наблюдались колебания с доминированием трехъячеистой структуры $3 k$ и четырехъячеистой $4 k$. Буквой C обозначена область существования стохастических колебаний. Число точек в обозначениях границ областей соответствует числу конвективных ячеек. Прямые штрихи соответствуют стационарным режимам, а волновые - колебательным. Границы областей определены с погрешностью 3%, за исключением границы области C, погрешность определения которой составляет 6%.

Режимы, приведенные на фиг. 2 , получены при медленном изменении параметров R и α, начиная от точки, принадлежащей квадранту $\alpha>0$. Тип движения и направление циркуляции жидкости в ячейках может сохраняться и после смены знака α. Две такие области изображены на карте в квадранте $\alpha<0$. Полная карта режимов получится в том случае, если все границы областей на фиг. 2 зеркально отразить относительно линии $\alpha=0$ и изобразить все полученные области на одном рисунке.

Если изменять определяющие параметры задачи достаточно мальми ступеньками вдоль некоторой траектории на плоскости (R, α), то смена движения одного типа другим происходит кризисным образом при пересечении границы области существования исходного движения. При обратном движении вдоль той же траектории новое движение сменится исход-

ным ужк в другой точке, а именно при пересечении границы области существования второго движения. Карта режимов отражает все гистерезисные явления, наблюдавшиеся при медленном изменении параметров задачи.

В тех случаях, когда после пересечения границы области существования исходного движения система попадает в зону наложения нескольких областей, из всех возможных режимов на смену исходному появляется тот, который наиболее близок к исходному по числу конвективных ячеек. Таким образом, пользуясь картой, легко выбрать траекторию, которая обеспечит в данной области любой из возможных в ней режимов конвекции.

Когда о кризисных изменениях течения судят только по появлению новых независимых гармоник во временни́х спектрах, то кризисные изменения пространственной структуры могут быть не замечены. Это может быть, например, в том случае, когда имеет место синхронизация колебаний всех мод доминирующей пространственной модой. Кризисные изменения пространственной структуры трудно обнаружить и по спектрам $\left\langle a_{n}{ }^{2}\right\rangle$. Напболее чувствительны к перестройке течения спектры $\left\langle b_{n}{ }^{2}\right\rangle$.

На фиг. 3 представлена эволюция пространственного спектра $\left\langle b_{n}{ }^{2}\right\rangle$ с ростом R при $\alpha=0$. Первые три спектра относятся к колебательному режиму конвекции с доминированием третьей моды ($R=53,55$ и 70). Второе место по величине среднеквадратичной амплитуды занимает первая мода. С ростом R среднеквадратичная амплитуда первой моды возрастает, достигая вблизи порога возникновения стохастического режима примерно 60% от среднеквадратичной амплитуды третьей моды. Четвер• тый сшектр, приведенный на фиг. 3 , соответствует стохастическому режиму при $R=73$. В этом случае возбуждены все собственные пространственные моды, которые могли быть зарегистрированы в данном эксперименте. При дальнейшем росте R огибающая дискретного спектра $\left\langle b_{n}{ }^{2}\right\rangle$ приобретает вид, характерный для диссипативного интервала пространственного спектра развитой турбулентности [4].

Порог возбуждения стохастического режима определяется параметрами R и и не зависит от того, какова структура предшествующего ему движения. Например, как видно из фиг. 2, режим C возникает при $\alpha=40^{\prime}$ как из стационарного режима 1 , так и из колебательных режимов $3 k$ и $4 k$ при одном п том же числе Рэлея. При возрастании R режимы $3 k$ и $4 k$ псчезают в результате разрушения ячеистой структуры колебаниями крупномасштабной циркуляции жидкости, соответствуюшей первой моде. Об этом говорит гот факт, что вблизи границы области C среднеквадратичная амплитуда первой моды приближается к амплитуде доминирующей моды. Аналогичным образом происходит переход к режиму C от стационарного четырехъячеистого движения. Визуальные наблюдения такого перехода описаны в [1]. Вблизи границы области C возникают колебания одноячеистой циркуляции жидкости, которые разрушают четырехъячеистое движение. Колебательный режим с доминированием первой

моды не устанавливается из-за его неустойчивости к более мелкомасштабным возмущениям. В области C недалеко от ее границы наблюдается перемежаемость пространственных мод.

Внутри областей, изображенных на фиг. 2 , наблюдаются кризисные изменения пространственной структуры движения, не сопровождающиеся сменой доминирующей моды. Например, внутри области $3 k$ при $\alpha=0$ амплитуды первой и третьей моды изменяются с ростом R монотонно, а пятая мода возбуждается жестко, возникая с конечной амплитудой при $R=56$. При $R<56$ ее амплитуда ниже уровня шумов. С появлением пятой моды скорость роста $\left\langle b_{1}{ }^{2}\right\rangle$ становится меньше, а $\left\langle b_{3}{ }^{2}\right\rangle$ начинает уменьшаться с ростом R. Чем больше α, тем при бо́льших R возбуждается пятая мода.

Если, оставаясь в области $3 k$, уменьшить R, то при подходе к границе曰бласти 4 в пространственном спектре начинают расти четные моды. Это видно из сопоставления спектров при $R=51$ п 53 на фиг. 3. При $R=49$ устанавливается четырехъячеистое стационарное движение.

Пространственные спектры в области $4 k$ исследованы при $\alpha=30^{\prime}$. Если $R<71$, то в спектрах присутствуют лишь четвертая и первая мода (фиг. 1). При $R=71$ мягко возбуждается седьмая мода. С увеличением R амплитуда доминирующей четвертой моды уменьшается, как и в случае режима $3 k$, а $\left\langle b_{1}{ }^{2}\right\rangle$ и $\left\langle b_{z}{ }^{2}\right\rangle$ увеличиваются. Перед возникновением стохастического режима $\left\langle b_{1}{ }^{2}\right\rangle$ примерно в 3 раза меньше, чем $\left\langle b_{4}{ }^{2}\right\rangle$, тогда как внутри области $4 k$ они отличаются более чем в 100 раз (фиг. 1).

С помощью аналоговой схемы, позволяющей выделять собственные моды в реальном времени, были зарегистрированы временны́е реализации пульсаций первой, третьей и пятой собственных мод в режиме $3 k$ при $\alpha=0$. Анализ этих реализаций показывает, что знак амплитуды третьей доминирующей моды сохраняется во времени. Знаки у амплитуд первой и пятой мод изменяются, хотя обе эти моды имеют постоянные составляющие. Во временны́х спектрах амплитуд $b_{1}(t), b_{3}(t)$ п $b_{5}(t)$ наблюдаются одинаковые частоты. Различие состоит лишь в соотношениях кратных гармоник и в ширине пиков.

На фиг. 4 приведены временни́е спектры первой моды при $\alpha=0$ и двух значениях R. При $R=62$ (кривая 1) спектр имеет пики на кратных частотах. Колебания не строго периодические: пики широкие, значительный уровень имеет фоновая составляющая. Во временно́м спектре первой моды при $R=73$, когда режим становится стохастическим, кратных частот нет, спектр сплошной. В пространственном спектре для такого режима возбуждены все собственные моды ($R=73$, фиг. 3, г). Таким образом,

стохастический режим характеризуется случайным поведением системы как во времени, так и в пространстве.

Отметим, что режим C отличается от стохастических режимов конвекции, описанных в [5], где в колебаниях участвует небольшое число мод, а стохастичность наблюдается только временная. Пространственная структура движения остается сравнительно простой. В данных экспериментах режимам, подобным описанным в [5], являются режимы $3 k$ и $4 k$.

Идея представления случайных функций в виде суперпозиции компонент фиксированного функционального вида со случайными взаимно некоррелированными коэффициентами, использованные выше, заимствованы из [6].

На фиг. 5 приведены нормированные собственные функции для a квазипериодического конвективного течения ($R=62$) и b - для стохастического режима ($R=73$) при $\alpha=0$. В том и в другом случаях собственные моды существенно отличаются от синусоидальных.

ЛИТЕРАТУРА

1. Богатырев Г. П., Гилев В. Г. Надкритические конвективные движения в корот ком горизонтальном цилиндре.- Изв. АН СССР. МЖГ, 1980, № 4, с. 137-142.
2. Богатырев Г. П., Гилев В. Г. Экспериментальное исследование надкритических конвективных движений в щелевой полости.- В сб.: Конвективные течения Пермь: Изд-во Пермск. ун-та, 1979, с. 25-30.
3. Богатырев Г. П., Гилев В. Г., Зимин В. Д. Пространственно-временные спектры стохастических колебаний в конвективной ячейке.- Письма в ЖЭТФ, 1980, т. 32, вып. 3, с. 229-232.
4. Зимин В. Д., Кетов А. И. Турбулентная конвекция в подогреваемой снизу кубической полости. - Изв. АН СССР. МЖГ, 1978, № 4, с. 133-138.
5. Любимов Д. В., Путин Г. Ф., Чернатынский В. И. О конвективных движениях в ячейке Хеле-ІІІу.- Докл. АН СССР, 1977, т. 235, № 3, с. 554-557.
6. Яглом A. М. Спектральные представления для различных классов случайных функций. - Тр. 4 -го Всесоюз. матем. съезда. Т. 1. Л.: Изд-во АН СССР, 1963, c. 250-273.
Пермь \quad Поступила в редакциюю
