MEXAHИKA
ЖИДКОСТИИГАЗА
№ 6 • 1980

ДЕКРЕМЕНТЫ ЗАТУХАНИЯ КОЛЕБАНИИ И ЭФФЕКТИВНЫЕ КОЭФФИЦИЕНТЫ ТЕПЛООБМЕНА ПУЗЫРЬКОВ, РАДИАЛЬНО ПУЛЬСИРУЮЩИХ в ЖИДКОСТИ

Р. И. НИГМАТУЛИН, Н. С. ХАБЕЕВ

(Mockва)
Рассматриваются паровые (газовые) пузырьки, совершающие свободные ра диальные колебания в жидкости. Получены выражения для частоты и декремента затухания малых свободных колебаний пузырьков. Определены әффективные коәффи циенты теплообмена радиально пульсирующих пузырьков с жидкостью.

В литературе, посвященной динамике п тепломассообмену паровых и газовых пузырьков (см., например, [1, ${ }^{2}$] и библиографию в них), в основном исследуется влияние процессов тенло- и массообмена на динамику пузырьков. Представляюо интерес, однако, и обратные задачи, а именно, как влияет динамика, в частности радиальные пульсации, на интенсификацию процессов тенло- и массообмена пузырьков с жидкостью. В ${ }^{3}{ }^{3}$] показано, что тепловые әффекты играют определяющую роль в формировании структуры волны в жидкости с пузырьками газа. В то же время расчет двухфазных течений, особенно нестационарных, с учетом неоднородностей распределения температуры в фазах представляет очень трудоемкую задачу и требует большого количества машинного времени (пример такого расчета приведен в [4]). Поэтому при расчете течений парожидкостных смесей с пузырьковой структурої основная проблема состоит в задании коәффициентов межфазного взаимодействия, в частности теплового, в рамках двухтемпературной модели и справедливых для не-
которого класса процессов.

1. Система основных уравнений, описывающих процессы тепломассообмена и динамику сферического гомобаричного парового (газового) пузырька в жидкости, приведена в [${ }^{1,2}$]. Уравнения притока тепла, неразрывности и состояния для фаз в сферических әйлеровых координатах r, t имеют вид

$$
\begin{aligned}
& \rho_{V}\left(\frac{\partial u_{V}}{\partial t}+v_{V} \frac{\partial u_{V}}{\partial r}\right)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\lambda_{V} r^{2} \frac{\partial T_{V}}{\partial r}\right)+\frac{p_{V}}{\rho_{V}} \frac{d \rho_{V}}{d t} \\
& \frac{\partial \rho_{V}}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \rho_{V} v_{V}\right)=0, \quad p_{V}(t)=B \rho_{V}(r, t) T_{V}(r, t) \\
& \rho_{l}\left(\frac{\partial u_{l}}{\partial t}+v_{l} \frac{\partial u_{l}}{\partial r}\right)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\lambda_{l} r^{2} \frac{\partial T_{l}}{\partial r}\right) \\
& v_{l}=w_{l} R^{2} / r^{2}, \quad u_{V}=c_{V} T_{V}, \quad u_{l}=c_{l} T_{l}, \quad \rho_{l}=\text { const }
\end{aligned}
$$

где ρ-плотность, T-температура, p-давление, v-скорость, u удельная внутренняя энергия, λ - коэффициент теплопроводности, R радиус пузырька, w_{l} - массовая скорость жидкости на поверхности пувырька, B - газовая постоянная, c_{V} - удельная теплоемкость пара при постоянном объеме. Индексы l п V относятся соответственно к параметрам жидкости и пара, индекс 0 -к параметрам в невозмущенном состоянии.

Граничные условия для уравнений притока тепла имеют вид [5]

$$
\begin{align*}
& r=0: \frac{\partial T_{\mathrm{v}}}{\partial r}=0 ; \quad r=\infty: T_{l}=T_{0} \\
& r=R(t): \lambda_{l} \frac{\partial T_{l}}{\partial r}-\lambda_{v} \frac{\partial T_{v}}{\partial r}=j l, \quad T_{v}=T_{l}=T_{s}\left(p_{v}\right) \tag{1.2}
\end{align*}
$$

где $T_{s}\left(p_{v}\right)$ - темшература насыщения, j - скорость фазового перехода с единицы поверхности, l - удельная теплота испарения.

Скорость поверхности пузырька и массовые скорости фаз на этой поверхности связаны соотнощениями

$$
\begin{equation*}
\dot{R}=\omega_{l}+j / \rho_{l}, \quad \dot{R}=w_{v}+j / \rho_{v}(R) \tag{1.3}
\end{equation*}
$$

Уравнение пульсации пузырька при наличии фазовых переходов запишем в виде

$$
\begin{equation*}
R \dot{w}_{l}+\frac{3}{2} w_{l}{ }^{2}+2 w_{l} \frac{j}{\rho_{l}}=\frac{p_{v}-p_{\infty}-2 \sigma / R}{\rho_{l}} \tag{1.4}
\end{equation*}
$$

где p_{∞} - давление жидкости вдали от пузырька, σ - коәффициент поверхностного натяжения.

При выполнении условия гомобаричности, когда размер пузырька значительно меньше длины звуковой волны в паре, имеет место интеграл уравнения притока тепла для паровой фазы

$$
\begin{equation*}
\frac{d p_{V}}{d t}=\frac{3(\gamma-1)}{R}\left(\lambda_{V} \frac{\partial T_{V}}{\partial r}\right)_{R}-\frac{3 \gamma \underline{p}_{V}}{R} w_{V}, \quad \gamma=\frac{c_{V}+B}{c_{V}} \tag{1.5}
\end{equation*}
$$

Условие гомобаричности позволяет также путем интегрирования уравнения неразрывности паровой фазы определить профиль скорости в пузырьке

$$
\begin{equation*}
v_{V}(r, t)=\frac{r}{R} w_{V}+\frac{\gamma-1}{\gamma p_{V}}\left[\left.\lambda_{V} \frac{\partial T_{V}}{\partial r}\right|_{:}-\left.\frac{r}{R} \lambda_{V} \frac{\partial T_{V}}{\partial r}\right|_{R}\right] \tag{1.6}
\end{equation*}
$$

2. В $\left[{ }^{1,2}\right]$ приведенная выше система уравнений решалась численно для различных режимов радиального движения пузырьков (колебания, рост, схлопывание) и показано, что из-за возникновения при пульсациях пузырей температурных «ям» и «горбов» в прилегающих к поверхности пузыря слоях газа и жидкости возможны ситуации, когда в некоторые промежутки времени тепловой поток направлен внутрь пузырька, хотя средняя температура газа в пузыре $\langle T\rangle$ при этом выше температуры жидкости. Поэтому формальное определение числа Нуссельта по формуле

$$
\begin{equation*}
\mathrm{Nu}=\frac{2 R q_{R}}{\lambda\left(\langle T\rangle-T_{\sigma}\right)}, \quad q_{R}=-\left.\lambda \frac{\partial T}{\partial r}\right|_{R} \tag{2.1}
\end{equation*}
$$

приводит в некоторые промежутки времени к отрицательным мтновенным значениям чисел Нуссельта, и встает вопрос о способе их осреднения. В зависимости (2.1) R - радиус пузыря, T_{σ} - температура его поверхности, λ - коэффициент теплопроводности газа. Представляется естественным эффективные коэффициенты теплообмена выбирать из условия, чтобы они обеспечивали такую же тепловую диссипацию (затухание колебаний пузырька), что и в точном решении.

B [${ }^{6}$] рассмотрены малые свободные колебания парового пузыря, когда радиус его может быть описан действительной частью выражения
(2.2) $\quad R=R_{0}(1+\delta \exp (h t)), \quad|\delta| \ll 1$

Там же получено характеристическое уравнение как условие существования нетривиального решения системы линейных уравнений. Для квази-

равновесных пузырьков в идеальной жидкости при состояниях, далеких от критических, оно имеет вид

$$
\begin{align*}
& H+\frac{3 \gamma N H}{H^{2}-N S}+M=0 \tag{2.3}\\
& H=\frac{h R_{0}{ }^{2}}{a_{V}}, \quad N=\frac{p_{0} R_{0}{ }^{2}}{\rho_{l} a_{V}^{2}}, \quad S=\frac{2 \sigma}{R_{0} p_{0}}, \quad E=\sqrt{\frac{a_{V}}{a_{l}}} \\
& M=k(1+E \bar{V})+L B_{1}, \quad B_{1}=\sqrt{H} \operatorname{cth} \sqrt{H}-1 \\
& k=3(\gamma-1) x^{2} \frac{\lambda_{l}}{\lambda_{V}}, \quad L=3(\gamma-1)(1-x)^{2}, \quad x=\frac{c_{p} T_{0}}{l} \\
& a_{l}=\frac{\lambda_{l}}{\rho_{l} c_{l}}, \quad a_{V}=\frac{\lambda_{V}}{\rho_{V} c_{p}}, \quad c_{p}=c_{V}+B, \quad T_{0}=T_{s}\left(p_{0}\right)
\end{align*}
$$

В случае достаточно крупных паровых пузырьков, когда влияние процессов тепло- и массообмена на динамику пузырьков мало, можно получить асимптотическое решение уравнения (2.3). В этом случае можно пренебречь кашиллярными эффектами, а решение искать в виде []

$$
\begin{equation*}
H=r(\cos \varphi+i \sin \varphi), \quad r=\sqrt{3 \gamma N}(1+\varepsilon) \tag{2.4}
\end{equation*}
$$

Подставив (2.4) в уравнение (2.3), получим

$$
\begin{align*}
& r \cos \varphi+\frac{3 \gamma N}{r} \cos \varphi+k\left(1+E \sqrt{r} \cos \frac{\varphi}{2}\right)+L \operatorname{Re}\left(B_{1}\right)=0 \\
& r \sin \varphi-\frac{3 \gamma N}{r} \sin \varphi+k E \sqrt{r} \sin \frac{\varphi}{2}+L \operatorname{Im}\left(B_{1}\right)=0 \tag{2.5}
\end{align*}
$$

Из (2.4) следует, что $\varphi \approx \pi / 2$ и для $\overline{\sqrt{H}}$ справедливо представление

$$
\begin{equation*}
\sqrt{H}=\frac{b}{2}(1+i), \quad b=(12 \gamma N)^{1 / 6} \tag{2.6}
\end{equation*}
$$

Подставив (2.6) в (2.5), с учетом (2.4) получим

$$
\begin{aligned}
& \cos \varphi=-\frac{L \operatorname{Re}\left(B_{1}\right)+k(1+1 / 2 E b)}{b^{2}} \\
& \varepsilon=-\frac{L \operatorname{Im}\left(B_{1}\right)+1 / 2 k E b}{b^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{Re}\left(B_{1}\right)=\frac{b}{2} \frac{\operatorname{sh} b+\sin b}{\operatorname{ch} b-\cos b}-1 \tag{2.7}
\end{equation*}
$$

$$
\operatorname{Im}\left(B_{1}\right)=\frac{b}{2} \frac{\operatorname{sh} b-\sin b}{\operatorname{ch} b-\cos b}
$$

Для собственной частоты парового пузырька и логариф̆мического декремента затухания его колебаний, вызванного тепло- и массообменом, получим следующие выражения:

$$
\omega=\frac{v_{0}}{R_{0}}\left[1-\frac{L \operatorname{Im}\left(B_{1}\right)}{b^{2}}-\frac{k E}{2 b}\right]
$$

$$
\begin{equation*}
\Lambda=-2 \pi \frac{\operatorname{Re}(h)}{|\operatorname{Im}(h)|}=\frac{2 \pi L}{b^{2}} \operatorname{Re}\left(B_{4}\right)+k \pi \frac{b E+2}{b^{2}}, \quad b \gg k E \tag{2.8}
\end{equation*}
$$

Если выполнено условие $\mathrm{Pe}_{v} \gg 1$, то формулы (2.8) упрощаются

$$
\begin{align*}
& \omega=\frac{v_{0}}{R_{0}}\left[1-\frac{L}{2 \overline{\mathrm{Pe}_{\mathrm{V}}}}-\frac{k E^{2}}{2 \sqrt{\mathrm{Pe}_{l}}}\right], \quad \sqrt{\mathrm{Pe}_{l}} \gg k E^{2} \\
& \Lambda=\frac{\pi L}{\mathrm{Pe}_{v}}\left(\sqrt{\mathrm{Pe}_{\mathrm{v}}}-2\right)+\frac{\pi k E^{2}}{\mathrm{Pe}_{l}}\left(\sqrt{\mathrm{Pe}_{l}}+2\right) \tag{2.9}\\
& v_{0}=\omega_{0} R_{0}=\sqrt{\frac{3 \gamma p_{0}}{\rho_{l}}}
\end{align*}
$$

Здесь $\mathrm{Pe}_{i}=2 R_{0} v_{0} / a_{i} \quad(i=l, V)$ - числа Пекле, в которых в качестве скорости выбрана характерная радиальная скорость малых свободных адиабатических колебаний пузырька [${ }^{7}$].

В выражениях для декремента затухания колебаний пузырька (2.8), (2.9) первое слагаемое вызвано тепловым сопротивлением пара в пузырьке, а второе - тепловым сопротивлением жидкксти. Видно, что при $x \rightarrow 1$ первая составляющая декремента затухания стремится к нулю. Это связано с тем, что вв квазиравновесном приближении при $x \approx 1$ температура пара в пузырьке практически однородна и равна температуре насыщения $\left[{ }^{8}\right]$. Следует отметить, что для паровых пузырьков при состояниях, далеких от критических, первая составляющая декремента затухания значительно меньше, чем вторая.

При отсутствии фазовых переходов ($l=$ $=\infty$) формула (2.9) дает следующее выра-
 жение для декремента затухания колебаний газового пузырька, обусловленного тепловой диссипацией:

$$
\begin{equation*}
\Lambda=\frac{6(\gamma-1) \pi}{b^{2}}\left(\frac{b}{2} \frac{\operatorname{sh} b+\sin b}{\operatorname{ch} b-\cos b}-1\right) \tag{2.10}
\end{equation*}
$$

При $\mathrm{Pe}_{g} \gg 1$ формула (2.10) упрощается

Аналогично можно получить решение уравнения (2.3) в другом предельном случае достаточно мелких газовых пузырьков, колебания которых происходят в режиме, близком к изотермическому, с частотой

$$
\omega=\mid\langle\operatorname{Im}(h)|=\sqrt{3 p_{0} / \rho_{l}} R_{0}{ }^{-1}
$$

В этом случае выражение для декремента затухания колебаний пузырька имеет вид

$$
\begin{equation*}
\Lambda=\frac{(\gamma-1) \pi}{30 \gamma} \mathrm{Pe}, \quad \mathrm{Pe}=\frac{2 R_{0}}{a_{g}} \sqrt{\frac{3 p_{0}}{\rho_{l}}} \ll 1 \tag{2.12}
\end{equation*}
$$

На фигуре приведены кривые зависимости собственной частоты ω и логарифмического декремента затухания Λ (соответственно кривые 1

и 2) колебаний парового пузырька в воде при атмосферном давлении от радиуса, полученные путем численного решения уравнения (2.3). Пунктирные кривые - соответствующие характеристики пузырька при отсутствии фазовых превращений ($l=\infty$). Результаты расчетов хорошо согласуются с аналитическими зависимостями (2.9), (2.11). Так как собственные частоты адиабатического и изотермического пузырьков близки между собой (отличаются в $\bar{\gamma}$), формула (2.10) достаточно хорошо приближенно описывает поведение всей кривой декремента теплового затухания колебаний газовых пузырьков в целом [${ }^{9}$]. Как показывают результаты численного решения задачи о нелинейных колебаниях пузырьков [1,2], полученные аналитические формулы для декрементов затухания малых колебаний пузырьков, вызванного тепломассообменом, достаточно хорошо описывают и затухание нелинейных радиальных колебаний пузырьков.
3. Используя полученные выражения для декремента затухания колебаний пузырьков, обусловленного тепломассообменом, можно определить эффективные коәффициенты вязкости жидкости для адиабатического пузырька, вызывающей такое же затухание колебаний, как и процессы тепломассообмена. Рассмотрение теплообмена как диссишативного процесса с некоторым фиктивным коэффициентом вязкости проводилось в [${ }^{10}$]. Логарифмический декремент затухания колебаний пузырька, вызванного вязкой диссипацией, имеет вид [${ }^{9}$]

$$
\begin{equation*}
\Lambda=4 \pi \frac{v}{R_{0} v_{0}} \tag{3.1}
\end{equation*}
$$

Приравняв выражения (3.1) и (2.9), получим следующее выражение для әффективного кинематического коәффициента вязкости жидкости, вызывающей то же затухание при пульсациях крупных паровых пузырей, что.и тепломассообмен:

$$
\begin{equation*}
v=\frac{1}{8}\left[a_{l} k E^{2}\left(\overline{\gamma \mathrm{Pe}_{l}}+2\right)+a_{V} L\left(\overline{\sqrt{\mathrm{Pe}_{V}}}-2\right)\right] \tag{3.2}
\end{equation*}
$$

Аналогично определенные эквивалентные коэффициенты вязкости для пульсаций крупных и достаточно мелких газовых пузырьков имеют соответственно вид

$$
\begin{align*}
& v=\frac{3(\gamma-1)}{8} a_{g}\left(\overline{\left.\sqrt{\mathrm{Pe}_{g}}-2\right), \quad \mathrm{Pe} \mathrm{e}_{g} \gg 1}\right. \tag{3.3}\\
& v=\frac{(\gamma-1)}{20 \gamma} \frac{p_{0} R_{0}^{2}}{\rho_{l} a_{g}} \quad \mathrm{Pe} \ll 1
\end{align*}
$$

4. В рамках трехтемпературной модели (пузырек - межфазная поверхность - жидкость) основные уравнения, описывающие динамику, состояние, тепло- и массообмен, при малых колебаниях парового пузырыка имеют вид [${ }^{2}$]

$$
\begin{aligned}
& \dot{R}=w_{i}+\frac{j}{\rho_{i}}(i=l, V) ; \quad \rho_{l} R \dot{w}_{l}=p_{V}-p_{\infty}-\frac{2 \sigma}{R} \\
& \rho_{v} c_{p} T=\dot{p}_{V}-\frac{3 \beta_{v}}{R}\left(T_{V}-T_{S}\right) \\
& \dot{p}_{V}=-\frac{3(\gamma-1)}{R} \beta_{V}\left(T_{v}-T_{s}\right)-\frac{3 \gamma p_{v}}{R} w_{V} \\
& \frac{d T_{s}}{d p_{V}}=\frac{T_{s}}{l}\left(\frac{1}{\rho_{v}}-\frac{1}{\rho_{l}}\right) \\
& j l=\beta_{V}\left(T_{V}-T_{s}\right)+\beta_{l}\left(T_{l}-T_{s}\right)
\end{aligned}
$$

Здесь β_{l} и β_{v} - коәффициенты теплоотдачи от поверхности пузырька соответственно к жидкости и пару.

Будем искать решение системы (4.1) в виде

$$
\begin{aligned}
& R=R_{0}\left(1+\delta e^{h t}\right), \quad p_{V}=p_{0}\left(1+P_{\mathrm{V}} e^{h t}\right), \quad T=T_{0}\left(1+\theta e^{h t}\right) \\
& w=\frac{a_{\mathrm{V}}}{R_{0}} W e^{h t}, \quad j=\frac{a_{\mathrm{V}} \rho_{\mathrm{V} 0}}{R_{0}} I e^{h t}
\end{aligned}
$$

При этом систему (4.1), используя введенные ранее обозначения, запишем в виде

$$
\begin{align*}
& W_{l}=\delta H-I \frac{\rho_{\mathrm{V} 0}}{\rho_{l}}, \quad W_{V}=\delta H-I, \quad P_{v}=\frac{H W_{l}}{N}-S \delta \\
& H \theta=\left(1-\frac{1}{\gamma}\right) H P_{\mathrm{V}}-\frac{3}{2} \mathrm{Nu}_{V}\left(\theta-\theta_{S}\right) \\
& H P_{v}=H \theta-3(\delta H-I), \quad \theta_{S}=\frac{p_{0}}{l}\left(\frac{1}{\rho_{\mathrm{v} 0}}-\frac{1}{\rho_{l}}\right) P_{\mathrm{v}} \\
& \frac{2}{x} I=\mathrm{Nu}_{\mathrm{V}}\left(\theta-\theta_{\mathrm{S}}\right)-\mathrm{Nu}_{l} \frac{\lambda_{l}}{\lambda_{\mathrm{V}}} \theta_{\mathrm{S}} \\
& \mathrm{Nu}_{i}=\frac{2 R \beta_{i}}{\lambda_{i}} \quad(l=l, V) \tag{4.2}
\end{align*}
$$

Рассмотрим случай достаточно крупных пузырьков, когда влияние процессов тепломассообмена на динамику пузырьков мало, а условшя в системе достаточно далеки от критических ($\rho_{V} \ll \rho_{l}$). Условие существования нетривиального решения системы (4.2) приводит к кубическому уравнению относительно H :

$$
\begin{align*}
& H^{3}+1 / 2\left[(L+3) \mathrm{Nu}_{v}+k \mathrm{Nu}_{l}\right] H^{2}+ \tag{4.3}\\
& +\left(3 \gamma N+{ }^{3} / 4 k \mathrm{Nu}_{v} \mathrm{Nu}_{l}\right) H+{ }^{9} / 2 \gamma N \mathrm{Nu}_{v}=0
\end{align*}
$$

Отыскивая решение уравнения (4.3) в форме (2.4), получим

$$
\begin{align*}
& \cos 3 \varphi+\left[(L+3) \mathrm{Nu}_{\mathrm{v}}+k \mathrm{Nu}_{l}\right] \frac{\cos 2 \varphi}{2 \sqrt{3 \gamma N}}+ \tag{4.4}\\
& +\left(1+\frac{k \mathrm{Nu}_{\mathrm{V}} \mathrm{Nu}_{l}}{4 \gamma N}\right) \cos \varphi+\frac{3 \mathrm{Nu}_{v}}{2 \sqrt{3 \gamma N}}=0
\end{align*}
$$

Условия (2.4) указывают на возможность представления $\varphi=\pi / 2+\beta$, $\beta>0, \quad \beta \ll 1$. Тогда в (4.4) тригонометрические функции можно заменить следующими их приближенными значениями:

$$
\begin{aligned}
& \cos \varphi \approx-\beta, \quad \sin \varphi \approx 1, \quad \cos 2 \varphi \approx-1 \\
& \cos 3 \varphi \approx 3 \beta, \quad \sin 3 \varphi \approx-1
\end{aligned}
$$

В результате получим

$$
\begin{align*}
& 3 \beta-\frac{(L+3) \mathrm{Nu}_{V}+k \mathrm{Nu}_{l}}{2 \sqrt{3 \gamma} N}-\left(1+\frac{k \mathrm{Nu}_{V} N \mathrm{Nu}_{l}}{4 \gamma N}\right) \beta+ \tag{4.5}\\
& +\frac{3 \mathrm{Nu}_{V}}{2 \sqrt{3 \gamma N}}=0
\end{align*}
$$

Если выполнено условие
(4.6) $\quad k N u_{V} N u_{l} \ll 4 \gamma N$

то из (4.5) следует

$$
\begin{equation*}
\beta=\frac{L N u_{V}+k N u_{l}}{4 \sqrt{3 \gamma N}} \tag{4.7}
\end{equation*}
$$

Это решение получено в предположении, что $\beta \ll 1$. Из (4.7) видно, что для әтого должны быть выполнены условия

$$
\begin{equation*}
L \mathrm{Nu}_{V} \ll 4 \overline{\sqrt{3 \gamma} N}, \quad k \mathrm{Nu}_{l} \ll 4 \overline{\sqrt{3 \gamma} N} \tag{4.8}
\end{equation*}
$$

Из (4.8) следует, что условие (4.6) при этом выполняется, т. е. пренебрежение перекрестным эффектом (произведением чисел Нуссельта) при решении уравнения (4.5) дошустимо.

Для логарифмического декремента затухания колебаний парового пузырька, обусловленного тепломассообменом, получим следующее выражение:

$$
\begin{equation*}
\Lambda=2 \pi \beta=\frac{\pi}{\mathrm{Pe}_{v}}\left[L \mathrm{Nu}_{V}+k \mathrm{Nu}_{l}\right] \tag{4.9}
\end{equation*}
$$

Приравняв составляющие декремента затухания малых колебаний парового пузырька (4.9) к соответствующим выражениям (2.9), полученным из точных уравнений, получим следующие формулы для эффективных коәффициентов теплообмена радиально пульсирующего парового пузырька с жидкостью:

$$
\begin{gather*}
\mathrm{Nu}_{V}=\sqrt{\mathrm{Pe}_{V}}-2, \quad \mathrm{Pe}_{V} \gg 1 \tag{4.10}\\
\mathrm{Nu}_{l}=\sqrt{\mathrm{Pe}_{l}}+2, \quad \overline{\sqrt{\mathrm{Pe}_{l}} \gg k E^{2}}
\end{gather*}
$$

В случае, когда $\mathrm{Pe}_{l} \ll 1$, влияние динамики колебаний на теплообмен мало и формула (4.10) дает $\mathrm{Nu}_{l}=2$ - известное стационарное решение для неподвижной сферы [${ }^{11}$].

Аналогично полученное выражение для эффективного коэффициента теплообмена пульсирующего газового пузырька с жидкостью имеет вид

$$
\begin{equation*}
\mathrm{Nu}=\sqrt{\mathrm{Pe}_{g}}-2, \quad \mathrm{Pe}_{g} \gg 1 \tag{4.11}
\end{equation*}
$$

Выражение для декремента затухания колебаний достаточно мелких газовых пузырьков в рамках двухтемпературной модели имеет вид

$$
\begin{equation*}
\Lambda=\frac{(\gamma-1) \pi \mathrm{Pe}}{3 \gamma \mathrm{Nu}}, \quad \mathrm{Pe} \ll 1 \tag{4.12}
\end{equation*}
$$

Приравняв выражения (2.12) и (4.12), получим, что при пульсациях газового пузырька в режиме, близком к изотермическому, $\mathrm{Nu}=10$. Такое же значение для числа Нуссельта в этих условиях было получено ранее в $\left.{ }^{12}\right]$, где исследовалось поведение пузырьков в размытой волне сжатия, когда радиус пузырька уменьшается по экспоненциальному закону.

Как показывают результаты численного решения задачи о нелинейных колебаниях пузырьков $\left[{ }^{1,2}\right]$, формулы (4.10), (4.11) достаточно хорошо описывают поведение пузырьков и при нелинейных режимах, например в ударных волнах умеренной интенсивности [3,4].

[^0]В этом случае в качестве характерной скорости в числе Пекле следует брать $2 R_{0} \alpha$, т. е. $\mathrm{Pe}=4 R_{0}{ }^{2} \alpha / a$.

Для газовых пузырьков это показано в [${ }^{12}$]. В случае парового пузырька по определению чисел Нуссельта можно записать цепочку равенств

$$
\begin{align*}
& \mathrm{Nu}_{l}=\frac{2 R \beta_{l}}{\lambda_{l}}=\frac{2 R}{T_{l}-T_{\sigma}}\left(\frac{\partial T_{l}}{\partial r}\right)_{R} \\
& \mathrm{Nu}_{V}=\frac{2 R}{T_{\sigma}-\left\langle T_{V}\right\rangle}\left(\frac{\partial T_{V}}{\partial r}\right)_{R} \tag{4.14}
\end{align*}
$$

Подставив в (4.14) решения, описывающие распределение температуры [${ }^{6}$], получим

$$
\begin{align*}
& \mathrm{Nu}_{l}=2(1+E \sqrt{H})=2+\overline{\sqrt{\mathrm{Pe}_{l}}} \tag{4.15}\\
& \mathrm{Nu}_{\mathrm{V}}=\frac{2 H B_{1}}{H-3 B_{1}}, \quad H=\frac{\alpha R_{0}^{2}}{a_{V}}, \quad \mathrm{Pe}_{i}=\frac{4 R_{0}^{2} \alpha}{a_{i}} \quad(i=l, V)
\end{align*}
$$

При $\mathrm{Pe}_{V} \gg 1$ выражение для внутреннего числа Нуссельта упрощается: $\mathrm{Nu}_{V}=$ $=\sqrt{\mathrm{Pe}_{\mathrm{V}}}$, что совпадает с главным членом формулы (4.10).

Поступила 3 VII 1979

ЛИТЕРАТУРА

1. Нигматулин Р. И., Хабеев Н. С. Теплообмен газового пузырька с жидкостью. Изв. АН СССР, МЖГ, 1974, № 5.
2. Нигматулин P. И., Хабеев Н. С. Динамика паровых пузырьков. Изв. АН СССР, МЖГ, 1975, № 3 .
3. Нигматулия Р. И., Хабеев H. С., ІІагапов B. III. Об ударных волнах в жидкости с пузырьками газа. Докл. АН СССР, 1974, т. 214, № 4.
4. Айдагулов P. P., Хабеев H. С., Шагапов В. ІІ. Структура ударной волны в жидкости с пузырьками газа с учетом нестационарного межфазного теплообмена. ПМТФ, 1977, № 3.
5. Лабунцов Д. А., Муратова Т. М. Физические и методические основы формулировки задач тепло- и массообмена при фазовых превращениях. В кн. Тепло- и массоперенос, т. 2, ч. 1. Минск, 1972.
6. Хабеев H. С. Эффекты теплообмена п фазовых переходов при колебаниях паровых пузырьков. Акуст. ж., 1975, т. 21, № 5.
7. Minnaert M. On musical air-bubbles and the sounds of running water. Phil. Mag., Ser. 7, 1933, vol. 16, No. 104.
8. Нигматулин Р. И., Хабеев Н. С. Динамика и тепломассообмен парогазовых пузырьков с жидкостью. В сб.: Некоторые вопросы механики сплошной среды. М., Изд-во МГУ, 1978.
9. Chapman R. B., Plesset M. S. Thermal effects in the free oscillation of gas bubbles. J. Basic Engr. Trans. ASME, Ser. D, 1971, vol. 93, No. 3.
10. Prosperetti A. Thermal effects and damping mechanicsms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Amer., 1977, vol. 61, No. 1.
11. Карслоу Г., Егер Д. Теплопроводность твердых тел. М., «Наука», 1964.
12. Хабеев H. С. Об одном аналитическом решении задачи теплообмена газового пузырька с жидкостью. Вестн. МГУ, Матем. мех., 1976, № 5.

[^0]: Отметим, что эти формулы справедливы и для экспоненциального сжатия пузырьков, соответствующего поведению их в начале размытой волны, когда изменение радиуса пузырька описывается формулой

 $$
 \begin{equation*}
 R=R_{0}\left(1-\delta e^{\alpha t}\right), \quad \alpha>0 \tag{4.13}
 \end{equation*}
 $$

