ОБ ИЗМЕНЕНИИ ОБЛАСТИ ЛОКАЈИЗАЦИИ ВОЗМУЩЕНИЙ В ІІРОЦЕССАХ НЕЛИНЕЙНОГО ПЕРЕНОСА

К. Б. ПАВЛОВ, А. С. РОМАНОВ

(Москва)
Квазилинейное уравнение параболического типа

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(\left|\frac{\partial u^{k}}{\partial x}\right|^{n-1} \frac{\partial u^{k}}{\partial x}\right)-\gamma u^{m} \tag{0.1}\\
& k, \gamma>0, \quad m \geqslant 0, \quad k n>1
\end{align*}
$$

следует рассматривать как обобщенную форму многих известных уравнений переноса с коэффициентами переноса, зависящими от переносимой величины. Например, случай $n=1$ соответствует переносу тепла в среде с теплопроводностью и стоками, зависящими от температуры по степенному закону [${ }^{1,2}{ }^{2}$]; случай $k=m=1$ описывает гечение проводящей неньютоновской жиджости в поперечном магнитном поле $\left[{ }^{3}\right]$; случай $k=2, m=0$ соответствует МГД-течению той же жидкости в поперечном магнитном поле в ламинарном пограничном слое [4]. В общем случае уравнение (0.1) описывает процесс турбулентной фильтрации [5] с нелинейными стоками. Характерной особенностью процессов, описываемых уравнением (0.1), является возможность наличия поверхностей фронта $x=x_{f}(t)$, строго разграничивающих области с $u(x, t)=$ $=0$ п области с $u(x, t)>0$, в которых локализованы возмущения переносимой величины [6]. Ниже проводится исследование закономерностей изменения области локализации возмущений переносимой величины в задачах Коши для уравнения (0.1).

1. Пусть в начальный момент времени $t=0$ задано симметричное по x начальное распределение переносимой величины $u(x, t)$, описываемое финитной функцией: $u_{0}(x)>0$ при $|x|<\left|x_{\Phi}\right|, u_{0}(x)=0$ при $|x|>\left|x_{\Phi}\right|$, где $x_{\Phi}=$ const <0.

Будем считать, что асимптотическое представление $u_{0}(x)$ при $x \rightarrow x_{\Phi}+0$ -определено выражением

$$
\begin{equation*}
u_{0}(x) \sim U_{0}\left(x-x_{\Phi}\right)^{\omega}, \quad U_{0}, \quad \omega \text {-const }>0 \tag{1.1}
\end{equation*}
$$

Динамика изменения области локализации возмущений переносимой величины при $t>0$ должна быть получена в результате решения сле.дующей задачи с «искомой» границей $x_{f}(t)$:

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(\frac{\partial u^{k}}{\partial x}\right)^{n}-\gamma u^{m} \\
& u(x, 0)=u_{0}(x), \quad u\left(x_{f}, t\right)=\left[\frac{\partial u^{k}}{\partial x}\left(x_{f}, t\right)\right]^{n}=0 \tag{1.2}\\
& x_{f}(0)=x_{\Phi}, \quad 0>x>x_{f}(t), \quad t>0
\end{align*}
$$

Условия при $x=x_{f}(t)$ вытекают из физических соображений о непрерывности решения задачи (1.2) $u(x, t)$ вместе с $\left[\partial u^{\hbar} / \partial x(x, t)\right]^{n}$. Из них также следует, что в выражении асимптотики (1.1) $\omega>1 / k$.

Определим возможные типы фронтовых решений уравнения (1.2) $u(x, t)>0$ при $0>x>x_{f}(t), u(x, t)=0$ при $x_{f}(t) \geqslant x>-\infty$, предполагая, что асимптотическое поведение фронтового решения при $x \rightarrow x_{f}(t)+0$

представимо в форме

$$
\begin{equation*}
u(x, t) \propto a(t)\left(x-x_{f}\right)^{\alpha}, \quad \alpha, a(t)>0 \tag{1.3}
\end{equation*}
$$

Подставляя (1.3) в уравнение (1.2), имеем

$$
\begin{align*}
& \dot{a}\left(x-x_{f}\right)^{\alpha}-a \alpha\left(x-x_{f}\right)^{\alpha-1} \dot{x}_{f} \propto \\
& \infty a^{k n} n(k \alpha)^{n}(k \alpha-1)\left(x-x_{f}\right)^{n(k \alpha-1)-1}-\gamma a^{m}\left(x-x_{f}\right)^{m \alpha} \tag{1.4}
\end{align*}
$$

где точка означает производную по времени. Различные варианты соотношений между показателями степени при ($x-x_{f}$) в отдельных членах (1.4) позволяют классифицировать фронтовые решения уравнения (1.2).

Если в (1.4) $n(k \alpha-1)-1=\alpha-1<m \alpha$, то $\alpha=\alpha_{1} \equiv n /(k n-1), m>p, p=1-$ $-k+1 / n$ и

$$
\begin{equation*}
\dot{x}_{f}(t)=-\left(k \alpha_{1}\right)^{n} a^{k n-1}(t)<0 \tag{1.5}
\end{equation*}
$$

Таким образом, при $m>p$ возможен режим переноса, при котором область локализации переносимой величины увеличивается со временем (режим $\dot{x}_{f}(t)<0$). Этот режим описывается асимптотическим представлением $u(x, t)$ (1.3) с $\alpha=\alpha_{1}$.

Если в (1.4) $\alpha-1=m \alpha<n(k \alpha-1)-1$, то $\alpha=\alpha_{2} \equiv 1 /(1-m), 1>m>p$ и

$$
\begin{equation*}
\dot{x}_{f}=(1-m) \gamma a^{m-1}(t)>0 \tag{1.6}
\end{equation*}
$$

Таким образом, при $1>m>p$ возможен режим переноса, при котором область локализации возмущений переносимой величины со временем уменьшается (режим $\dot{x}_{f}(t)>0$). Этот режим описывается асимптотическим представлением $u(x, t)$ (1.3) с $\alpha=\alpha_{2}$.

Если в (1.4) $\alpha-1=m \alpha=n(k \alpha-1)-1$, то $\alpha=\alpha_{s}=\alpha_{1}=\alpha_{2}=\alpha_{3}=(n+1) /$ $/(k n-m), m=p$ и

$$
\begin{equation*}
\dot{x}_{f}(t)=\alpha_{1}^{-1} \gamma a^{-1 / \alpha_{1}}(t)-\left(k \alpha_{1}\right)^{n} a^{k n-1}(t) \tag{1.7}
\end{equation*}
$$

откуда следует, что $\dot{x}_{f}(t) \lessgtr 0$ при

$$
\begin{equation*}
a(t) \lessgtr a_{s} \equiv\left[(k n-1)^{n+1} \gamma / k^{n} n^{n+1}\right]^{\alpha_{1} /(n+1)}=\mathrm{const} \tag{1.8}
\end{equation*}
$$

Из (1.7) и (1.8) можно заключить, что в случае $a(t)=a_{\text {s }}$ положение фронта может оставаться строго фиксированным в течение конечного или бесконечного интервала времени (режим $x_{f}(t) \equiv$ const).

Таким образом, при $m=p$ принципиально возможны три режима: $\dot{x}_{f}(t)<0, \dot{x}_{f}(t)>0$ и $\dot{x}_{f}(t) \equiv$ const; при этом в асимптотическом представлении $u(x, t)$ (1.3) $a(t)$ различно для разных режимов, однако показатель. α одинаков: $\alpha=\alpha_{s}$.

Если в (1.4) $m \alpha=n(k \alpha-1)-1<\alpha-1$, то $\alpha=\alpha_{3}, p>m \geqslant 0$ и

$$
\begin{equation*}
a(t)=a_{c} \equiv\left[\gamma(n+1) / n k^{n} \alpha_{3}^{n+1}(k+m)\right]^{1 /(k n-m)} \tag{1.9}
\end{equation*}
$$

(при $m=p a_{\text {c }}$ (1.9) переходит в a_{s} (1.8)). При $p>m \geqslant 0$ из соотношения (1.4) выражение для $x_{f}(t)$ не может быть определено, тем не менее можно утверждать, что для любого возможного в этом случае режима в асимптотическом представлении решения $u(x, t)$ (1.3): $\alpha=\alpha_{3}, a(t)=a_{c}$ (1.9).

Остановимся подробнее на рассмотрении возможности фиксирования фронта (режим $x_{f}(t) \equiv$ const). Если фронт остается фиксированным в течение конечного (метастабильный режим) или бесконечного интервала времени (стабильный режим), то соотношение (1.4) принимает вид

$$
\begin{align*}
& \dot{a}(t)\left(x-x_{f}\right)^{\alpha} \propto a^{k n}(t) n(k \alpha)^{n}(k \alpha-1)\left(x-x_{f}\right)^{n(k \alpha-1)-1}- \tag{1.10}\\
& -\gamma a^{m}(t)\left(x-x_{f}\right)^{m \alpha}
\end{align*}
$$

Из (1.10) следует, что при $m<1$ фиксирование положения фронта возможно с $\alpha=\alpha_{3}$ и $a(t)=a_{\text {с }}$ (1.9) в асимптотическом представлении решения $u=u(x, t)$ (1.3).

При $m=1$ режим $x_{f}(t) \equiv$ const имеет место при $\alpha=\alpha_{3}=\alpha_{4} \equiv(n+1) /(k n-$ $-1)$ и $\alpha>\alpha_{4} ; a(t)$ равны соответственно

$$
\begin{align*}
& a(t)=e^{-\gamma t} \alpha_{4}^{-\alpha_{1}}\left[n(k+1) k^{n}(\theta-\vartheta(t))\right]^{1 /(1-k n)} \tag{1.11}\\
& \vartheta(t) \equiv\left[1-e^{-\gamma(k n-1) t}\right][\gamma(k n-1)]^{-1} \\
& a(t)=a_{0} e^{-\gamma t} \tag{1.12}
\end{align*}
$$

Здесь θ и $a_{0}=$ const >0, определяемые из соответствующего начального условия задачи (1.2).

\dot{x}_{f}	$p>m \geqslant 0$	$m=p$	$1>m>p$	$m=1$	$m>1$
0	α_{3}	α_{s}	α_{3}	$\alpha_{3} \equiv \alpha_{4}$ илии $>\alpha_{4}$	α_{4}
0	a_{c}	a_{s}	1.9	1.11 или 1.12	
<0	α_{3}	α_{8}	α_{1} 1.5	α_{1} 1.5	${ }_{1}{ }_{1}$
	α_{3}	α_{8}	α_{2}	-	-
>0	a_{c}	$<a_{s}$	1.6	-	-

При $m>1$ из (1.10) следует, что режим $x_{f}(t) \equiv$ const имеет место с $\alpha=\alpha_{4}$ и

$$
\begin{equation*}
a(t)=\alpha_{4}{ }^{-\alpha_{1}}\left[n(k+1) k^{n}(T-t)\right]^{1 /(1-k n)} \tag{1.13}
\end{equation*}
$$

Здесь $T=$ const, определяемая из начального условия задачи (1.2).
Для большшей наглядности возможные режимы локализации возмущений переносимой величины с соответствующими выражениями α и $a(t)$ в асимптотическом представлении решения $u(x, t)$ (1.3) в зависимости от значения параметра m приводятся в таблице, где цифры означают номера формул, из которых определяется $a=a(t)$.
2. Прежде чем приступить к непосредственному описанию динамики изменения области локализации возмущений переносимой величины в задаче (1.2), необходимо сформулировать некоторые положения о сравнении решений, которые будут использованы в дальнейшем.

В этой связи отметим, что в $\left[^{7-9}\right.$] указаны теоремы о монотонной зависимости решения задачи (1.2) от начального условия для частных случаев значений показателей степени в уравнении (1.2); аналогичная теорема может быть доказана и в общем случае.

Рассмотрим вспомогательную задачу

$$
\begin{align*}
& \frac{\partial w}{\partial t}=\frac{\partial}{\partial x}\left(\frac{\partial w^{k}}{\partial x}\right)^{n}-\gamma w^{m} \\
& w(x, 0)=w_{0}(x)=\text { const }, \quad-\infty<x \leqslant 0, \quad t>0 \tag{2.1}
\end{align*}
$$

тде $w_{0}(x) \geqslant u_{0}(x)$ (1.1). В силу теоремы сравнения, следующей из монотонной зависи. мости решения задачи (1.2) от начального условия, решение задачи (2.1)

$$
\begin{array}{lll}
w(t)=(1-m) \gamma(T-t) & (m<1), & w(t)=w_{0} e^{-\gamma t} \quad(m=1) \tag{2.2}\\
w(t)=w_{0} /[1+\gamma(m-1) t]^{1 /(m-1)} & (m>1) &
\end{array}
$$

можно считать мажорирующим для решения задачи (1.2). Из (2.2) следует, что при $m<1 u\left(x, t>t_{0}\right)=0$, где $t_{0} \leq T$. Иными словами, при $m<1$ переносимая величина псчезает за конечный интервал времени.

Если в задаче (1.2) $\gamma=0$, то ее решение $u_{*}(x, t)$ связано с решением $u(x, t)$ с $\gamma>0$ соотношением $u(x, t) \leqslant u_{*}(x, t)$ при прочих равных условиях [${ }^{10}$].

Важно отметить, что теорему сравнения решений задачи (1.2) можно иснользовать в локальном варианте при асимптотическом выражении решений вблизи фронта. Пусть, например, асимптотики двух начальных распределений переносимой величчны $u_{0}(x)$ (1.1): $u_{01}(x)$ и $u_{02}(x)$ с одинаковым положением фронта в начальный момент времени x_{Φ}. Будем считать, что $u_{01}(x)>u_{02}(x)$ в некоторой области вблизи фронта, за исключением самой точки фронта: $u_{01}\left(x_{\Phi}\right)=u_{02}\left(x_{\Phi}\right)=0$. Тогда вблизи Фронта в течение не равного нулю промежутка времени между соответствующими решениями задачи (1.2) имеет место соотношение $u_{1}(x, t)>u_{2}(x, t)$. Это утверждение может быть строго доказано.

Динамика изменения области локализации возмущений переносимой величины определяется реализацией конкретного режима фронтового решения задачи (1.2). Она существенно зависит от начального распределения переносимой величины вблизи поверхности фронта. Действительно, диф-
 ференцируя по времени тождество $u\left(x_{f}(t), t\right)=0$ и используя затем уравнение (1.2), можно получить выражение

$$
\begin{gather*}
\dot{x}_{f}(t)=-\lim _{x \rightarrow x_{f^{+0}}}\left\{\left[\frac{\partial}{\partial x}\left(\frac{\partial u^{h}}{\partial x}\right)^{n}-\right.\right. \tag{2.3}\\
\left.\left.-\gamma u^{m}\right]\left(\frac{\partial u}{\partial x}\right)^{-1}\right\}
\end{gather*}
$$

определяющее режим движения фронта для всех $t \geqslant 0$. Подставив в (2.3) асимптотическое представление начального распределения $u_{0}(x)$ (1.1), будем иметь

$$
\begin{align*}
& \dot{x}_{f}(0)=-\lim _{x \rightarrow \Phi^{+}}\left[U_{0}^{k n-1}(\omega k)^{n}(\omega k-1) n \omega^{-1}\left(x-x_{\Phi}\right)^{n(\omega k-1)-\omega}-\right. \tag{2.4}\\
& \left.-\gamma U_{0}^{m-1}\left(x-x_{\Phi}\right)^{\omega(m-1)+1} \omega^{-1}\right]
\end{align*}
$$

откуда следует указанная зависимость.
Это положение проиллюстрируем сначала для случая $m>1$, для которого определим закон движения фронта $x_{f}(t)$ при $t \rightarrow+0$. Будем исходить из условия непрерывного перехода асимптотического решения $u(x, t)$ (1.3) в начальное распределение $u_{0}(x)$ (1.1) при $t \rightarrow+0$. Предполагая, что фронт движется при $t>0$ (а при $m>1$ может иметь место режим $\dot{x}_{f}(t)<0$, см. таблиду), имеем

$$
\begin{equation*}
\dot{a}(t)\left(x-x_{f}\right)^{\alpha_{1}} \sim U_{0}\left(x-x_{\Phi}\right)^{\infty} \sim U_{0}\left(x-x_{f}\right)^{\omega}, t \rightarrow+0, x \rightarrow x_{f}+0 \tag{2.5}
\end{equation*}
$$

Откуда, выполняя вначале предел $x \rightarrow x_{\Phi}+0$, имеем

$$
\begin{equation*}
a(t)\left[-\int_{0}^{t} \dot{x}_{f} d t\right]^{\alpha_{1}-\omega} \infty U_{0}, \quad t \rightarrow+0 \tag{2.6}
\end{equation*}
$$

С помощью соотношений (2.6) и (1.5) может быть определено выражение для $\dot{x}_{f}(t)$, асимптотически справедливое при малых значениях t :

$$
\begin{align*}
\dot{x}_{f} & =-A t^{\sigma_{1}}, \quad A=\left[\left(k \alpha_{1}\right)^{n} \xi^{\xi-1} U_{0}^{k n-1}\right]^{1 / \xi} \\
\sigma_{1} & =-1+1 / \xi, \xi=1+n-\omega(k n-1) \tag{2.7}
\end{align*}
$$

Зависимость показателя σ_{1} от показателя начального распределения $u_{0}(x)$ (1.1) ω показана на фигуре (кривая 1).

Еслии $\omega<\alpha_{1}$, то $\dot{x}_{f}(t) \rightarrow-\infty$ при $t \rightarrow+0$, но тем не менее $\left|x_{f}-x_{\Phi}\right|<\infty$, поскольку $\sigma_{1}>-1, A<\infty$. Если $\omega=\alpha_{1}$, то $\dot{x_{f}}(t) \equiv\left(\alpha_{1}\right)^{n} U_{0}^{k n-1}=$ const при $t \rightarrow+0$; наконец, если $\alpha_{1}<\omega<\alpha_{4}$, то $\dot{x}_{f}(t) \rightarrow 0$ при $t \rightarrow+0$.

Любопытен предельный переход $\omega \rightarrow \alpha_{4}-0$, при котором из (2.7) следует, что производные все более высоких порядков от $x_{f}(t)$ обращаются в нуль при $t \rightarrow+0$. Замечая это, можно предположить что в пределе при $\omega=\alpha_{s}$ фронт остается фиксированным по крайней мере в течение конечного интервала времени $0<t<T<\infty: x_{f}(t) \equiv x_{\Phi}=$ const. Напомним в этой связи, что при $m>1$ значение показателя $\alpha=\alpha_{4} \equiv(n+1) /(k n-1)$ в асимптотическом представлении решения $u(x, t)$ (1.3) с $a(t)$ (1.13) соответствует метастабильному режиму $x_{f}(t)=$ const, продолжающемуся в течение конечного интервала времени $0<t<T$. Значение T, определяемое из начального условия $u_{0}(x)$ с $\omega=\alpha_{4}$, равно

$$
\begin{equation*}
T=U_{0}^{1-k n}\left[\alpha_{k} k n(k+1)\right]^{-1} \tag{2.8}
\end{equation*}
$$

(Отметим, что на возможность существования метастабильных состояний указывалось в [${ }^{11,12}$] для частных случаев значений показателей в уравнении (1.2)).

Очевидно, что функция

$$
\begin{align*}
& u_{*}(x, t)=\left(\alpha_{4} / k\right)^{\alpha_{1}}\left(x-x_{\Phi}\right)^{\alpha_{\Phi}}\left[n(k+1)\left(T_{*}-t\right)\right]^{1 /(1-k n)} \tag{2.9}\\
& x \geqslant x_{\Phi}, t<T_{*}=\mathrm{const}<\infty
\end{align*}
$$

является решением задачи

$$
\begin{aligned}
& \frac{\partial u_{*}}{\partial t}=\frac{\partial}{\partial x}\left(\frac{\partial u_{*}^{k}}{\partial x}\right)^{n}, \quad u_{*}\left(x_{f}, t\right)=\left[\frac{\partial u_{*}^{k}}{\partial x}\left(x_{f}, t\right)\right]^{n}=0 \\
& u_{*}(x, 0)=\left(\alpha_{4} / k\right)^{\alpha_{1}}\left(x-x_{\Phi}\right)^{\alpha_{\star}}\left[n(k+1) T_{*}\right]^{1 /(1-k n)}
\end{aligned}
$$

описывающим метастабильный режим в течение интервала времени $0 \leqslant$ $\leqslant t \leqslant T$.. При надлежащем подборе константы T. точное решение (2.9) мажорирует решение задачи (1.2) с $\gamma>0$ и $\omega>\alpha_{4}$ при одинаковом начальном положении фронта. Следовательно, при $m>1$ и $\omega>\alpha_{4}$ имеет место режим $x_{f}(t) \equiv x_{\Phi}=$ const по крайней мере в течение конечного интервала времени $0 \leqslant t \leqslant T$.

Таким образом, при $m>1$ выбор режимов движения фронта $x=x_{f}(t)$, указанных в таблице, однозначно зависит от показателя ω в асимптотическом представлении начального распределения (1.1). Если $\omega<\alpha_{4}$, то при $t \rightarrow+0$ реализуется режим движения фронта с $\dot{x}_{f}(t)<0$. Если $\omega \geqslant \alpha_{i}$, ти фронт $x=x_{f}(t)$ неподвижен, по крайней мере, в течение конечного промежутка времени $0 \leqslant t \leqslant T$ *.

В случае линейного стока $m=1$ сохраняются все выводы о характере движения фронта $x=x_{f}(t)$, полученные при $m>1$. При $\omega \geqslant \alpha_{3}, 1 \leqslant m<k n$ можно дополнительно указать, что фронт оказывается неподвижным для любого $0 \leqslant t<\infty$ при достаточно большом значении $\gamma \geqslant \gamma_{0}>0$, где γ_{0} определяется из начального условия. Доказательство этого факта может быть проведено аналогично тому, как это сделано в [${ }^{12}$], где задача (1.2) исследовалась в частном случае при $m=k=1$.

В области изменения параметра $p \leqslant m<1$ возможны три режима движевия фронта (см. таблицу). Закон движения фронта в случае режима $\dot{x}_{t}(t)<0$ по-прежнему описывается выражениями (2.7). Аналогично может быть определен закон движения фронта при $t \rightarrow+0$ в случае режима
$\dot{x}_{f}(t)>0$:

$$
\dot{x}_{f}=B t^{\sigma_{2}}, B=\gamma^{\zeta}(1-m)^{t}(\zeta)^{1-t} U_{0}^{-\xi}, \sigma_{2}=-1+\zeta, \zeta=1 /(1-m) \omega
$$

Зависимость σ_{2} от параметра ω приведена на фигуре (кривая 2). Важно отметить, что в рассматриваемой области изменения параметра $p \leqslant m<1$ справедливы неравенства $\alpha_{1} \leqslant \alpha_{3} \leqslant \alpha_{2}, \alpha_{3}<\alpha_{4}$, что учтено на фигуре. Кривые пересекаются при значении $\omega=\alpha_{3}$. «Јокальный» вариант теоремы сравнения дает возможность определить начальный режим движения фронта в зависимости от ω. Если $\omega<\alpha_{3}$, то $\dot{x}_{f}(t)<0$; если же $\omega>\alpha_{3}$, то $\dot{x}_{f}(t)>0$. При $\omega=\alpha_{3}$ вопрос о направлении движения фронта $x=x_{f}(t)$ не может быть однозначно решен на основе проводимого асимптотического анализа, повидимому, при $\omega=\alpha_{3}$ могут реализовываться все три режима, возможные в случае $p \leqslant m<1$.

При $0 \leqslant m<p$ исходя из соотношения (2.4) можно определить значение $\dot{x}_{f}(0)$; оказывается, что в случае $\omega<\alpha_{3} \dot{x}_{f}(0)=-\infty$, в случае $\omega>\alpha_{3} \dot{x}_{f}(0)=$ $=\infty$. При $\omega=\alpha_{3}$ значение $\dot{x}_{f}(0)$ определяется величиной U_{0} : если $U_{0}>a_{6}$ (1.9), то $\dot{x}_{f}(0)=-\infty$, если $U_{0}<a_{c}$, то $\dot{x}_{f}(0)=\infty$, наконец, если $U_{0}=a_{c}$, то для определения $\dot{x}_{f}(0)$ необходимо уточнить асимптотическое представление (1.1).

В заключение отметим, что в рамках проведенного анализа не удается решить вопрос о переходе с одного режима движения фронта на другой и оценить время существования каждого режима. Исключением является случай, когда может быть применена глобальная теорема сравнения.

Поступила 2 VII 1979

ЛИТЕРАТУРА

1. Зельдович Я. Б., Компанеец A. $С$. К теории распространения тепла при теплопроводности, зависящей от температуры. Сб., посвященный 70 -летию акад. А. Ф. Иоффе. Изд-во АН СССР, 1950.
2. Самарский А. А., Соболь И. М. Примеры численного расчета температурных волн. Ж. вычисл. матем. и матем. фиа., 1963, т. 3, № 4.
3. Мартинсон Л. К., Павлов К. Б. Нестационарные сдвиговые течения проводящей жидкости со степенным реологическим законом. Магнитная гидродинамика, 1971, № 2.
4. Павлов К. Б. О магнитогидродинамическом течении несжимаемой вязкой жидкости, вызванном деформацией плоской поверхности. Магнитная гидродинамика, 1974, № 4.
5. Лейбензон Л. С. Общая задача о движении сжимаемой жидкости в пористой среде. Изв. АН СССР, Сер. геогр., геоффз., 1945, т. 9, „е 1.
6. Баренблатт Г. И. О некоторых неустановившихся движениях жидкости и газа в пористой среде. ПММ, 1952, т. 16, вып. 1.
7. Баренблатт Г. И., Вишик М. И. О конечной скорости распространения в задачах нестационарной фильтрации жидкости и газа. ПММ, 1956, т. 20, вып. 3.
8. Кершнер P. Об условиях локализации тепловых возмущений в полуогравиченной движущейся среде при наличии поглощения Вестн. МГУ. Сер. матем., мех., 1976, № 4.
9. Мартинсон Л. К., Павлов К. Б. Сдвиговые течения жидкости со степенным реологическим законом при наличии постоянной поперечной составляющей скорости. Изв. АН СССР, МЖГ, 1973, № 4.
10. Калашников A. C. О характере распространения возмущений в задачах нелинейной теплопроводности с поглощением. Ж, вычисл. матем. и матем. физ., 1974, т. 14, № 4.
11. Самарский А. А., Змитриенко Н. В., Курдюмов С. П., Михайлов А. П. Эффект метастабильной локализации тепла в среде с нелинейной теплопроводностью. Докл. AH CCCP, 1975, т. 223, № 6.
12. Мартинсон Л. К. Распространение сдвиговых возмущений в дилатантных жидкостях. Изв. АН СССР, МЖГ, 1978, № 6.
