MEXAHИKA
ЖИДКОСТИИГАЗА
№ 6 • 1980

АСИМПТОТИКА РЕШЕНИЯ ЗАДАЧИ УВЛЕЧЕНИЯ ЖИДКОСТИ ДВИЖУЩЕЙСЯ ПЛАСТИНКОИ

Р. С. БУРКИНА, В. Н. ВИЛЮНОВ

(Томск)
Обнаружена аналогия между постановками задачи об увлечении жидкости движущейся пластинкой $\left[{ }^{1-3}\right.$] и задачи о распространении стационарного пламени [4, ${ }^{5}$]. Методом теории особых возмущений найдено двухчленное асимптотическое выражение для толщины пленки h_{0}. Параметром разложения является число Бонда $\mathrm{Bo} \ll 1$. Дана количественная оценка границы применимости известной формулы [1,2]. Ранее подобная оценка проводилась экспериментально [${ }^{3}$]. Подход, используемый в данной работе, по-видимому, окажется плодотворным и для решения других задач капиллярной гидродинамики.

1. Толщина пленки, увлекаемой пластинкой, удовлетворяет следующему уравнению и граничным условиям:

$$
\begin{align*}
& V\left(h-h_{0}\right)+\frac{\rho g h_{0}{ }^{3}}{3 \eta}=\frac{h^{3}}{3 \eta}\left\{\rho g-\sigma \frac{d}{d z}\left[\frac{d^{2} h / d z^{2}}{\left[1+(d h / d z)^{2}\right]^{3 / 2}}\right]\right\} \tag{1.1}\\
& z \rightarrow 0, \quad h \rightarrow \infty, \quad d h / d z \rightarrow-\infty \tag{1.2}\\
& z \rightarrow \infty, \quad h \rightarrow h_{0}, \quad d h / d z \rightarrow 0, \quad d^{2} h / d z^{2} \rightarrow 0 \tag{1.3}
\end{align*}
$$

Здесь h, h_{0} - текущая и предельная толщины жидкой пленки; V скорость движения пластины; ρ, σ, η - плотность, поверхностное натяжение и вязкость жидкости, g - ускорение свободного падения; пространственная координата z направлена вдоль пластины нормально к поверхности неподвижной жидкости, на которой $z=0$.

Задача содержит два характерных масштаба длины: h_{0} - предельная толщина пленки ($z \rightarrow \infty$) и $a=\overline{/ \sigma / \rho g}$ - капиллярная постоянная Лапласа. Отношение $h_{0} / a=\sqrt{\mathrm{Bo}}$ является малым параметром задачи и в дальнейшем используется в качестве параметра разложения при построении решения. Кроме того, рассмотрен случай малых скоростей увлечения, когда $V \ll \sigma / 3 \eta$ (капиллярные силы намного превосходят вязкие).

Интервал изменения переменной $0 \leqslant z<\infty$ разбивается на две области область мениска $z \sim a$ (внешняя задача) и область течения вдали от мениска $z \gg 1$ (внутренняя задача).

Нормировка $\omega=3 \eta V / \sigma, \xi=z / a, x=h / a$ и понижение порядка (1.1)(1.3) заменой $f=(d x / d \xi)^{2}$ приводят к краевой задаче

$$
\begin{align*}
& \omega\left(x-\mathrm{Bo}^{1 / 2}\right)+\mathrm{Bo}^{1 / 2}=x^{3}\left\{1+\frac{\sqrt{f}}{2} \frac{d}{d x}\left[\frac{d f / d x}{(1+f)^{3 / 2}}\right]\right\} \tag{1.4}\\
& x \rightarrow \infty, \quad f \rightarrow \infty \\
& x \rightarrow \mathrm{Bo}^{1 / 2}, \quad f \rightarrow 0, \quad d f / d x \rightarrow 0 .
\end{align*}
$$

Во внутренней области вводятся переменные $X=\mathrm{Bo}^{-1 / 2} x, F=\omega^{-2 / 3}$, в результате вместо (1.4) и (1.6) имеем

$$
\begin{align*}
& X-1=\frac{\operatorname{Bo}\left(X^{3}-1\right)}{\omega}+\frac{X^{3} \sqrt{F}}{2} \frac{d}{d X}\left[\frac{d F / d X}{\left(1+\omega^{2 / 3} F\right)^{1 / 2}}\right] \tag{1.7}\\
& X \rightarrow 1, F \rightarrow 0, d F / d X \rightarrow 0
\end{align*}
$$

Задача (1.4)-(1.6) переопределена: уравнение второго порядка с тремя краевыми условиями. Лишнее граничное условие позволяет определить $\omega(\mathrm{Bo})$, подобно тому как это делается в теории стационарного распространения пламени [4,5].

При более строгом подходе следовало бы доказать существование и единственность «собственного» значения ω (Во). В данной статье этот вопрос остается открытым. Он представляет самостоятельный интерес.
2. Собственное значение ω отыскивается в виде регулярного в обеих областях асимптотического разложения

$$
\begin{equation*}
\omega=\delta_{1}(\mathrm{Bo}) \omega_{1}+\delta_{2}(\mathrm{Bo}) \omega_{2}+\ldots \tag{2.1}
\end{equation*}
$$

Соответственно искомые функции f и F во внешней и внутренней областях представляются рядами

$$
\begin{align*}
& f(x, \mathrm{Bo})=f_{0}(x)+v_{1}(\mathrm{Bo}) f_{1}(x)+\ldots \tag{2.2}\\
& F(X, \mathrm{Bo})=F_{0}(X)+\mu_{1}(\mathrm{Bo}) F_{1}(X)+\ldots
\end{align*}
$$

Подстановка (2.1) и (2.3) в (1.7) дает

$$
\begin{align*}
& X-1=\frac{\mathrm{Bo}\left(X^{3}-1\right)}{\delta_{1}(\mathrm{Bo}) \omega_{1}+\delta_{2}(\mathrm{Bo}) \omega_{2}+\ldots}+\frac{1}{2} X^{3} \sqrt{F_{0}+\mu_{1}(\mathrm{Bo})} \overline{F_{1}+\ldots} \times \tag{2.4}\\
& \times \frac{d}{d X}\left\{\frac{d F_{0} / d X+\mu_{1}(\mathrm{Bo}) d F_{1} / d X+\ldots}{\left[1+\left(\delta_{1} \omega_{1}+\delta_{2} \omega_{2}+\ldots\right)^{2_{1} / 1}\left(F_{0}+\mu_{1} F_{1}+\ldots\right)\right]^{1 / 2}}\right\} \\
& F_{0}(1)+\mu_{1}(\mathrm{Bo}) F_{1}(1)+\ldots=0 \\
& d F_{0}(1) / d X+\mu_{1}(\mathrm{Bo}) d F_{1}(1) / d X+\ldots=0
\end{align*}
$$

Отраничимся рассмотрением случая

$$
\begin{equation*}
\delta_{1}(\mathrm{Bo}) \ll 1 \tag{2.5}
\end{equation*}
$$

который соответствует исследуемому режиму течения с $V \ll \sigma / 3 \eta$.
Тогда условие (2.5) позволяет множители вида $1 /\left[1+\psi\left(\delta_{1} \ldots\right)\right]$ разложить в ряд. В итоге имеем

$$
\begin{gather*}
X-1=\left(\mathrm{Bo} / \delta_{1} \omega_{1}\right)\left(1-\delta_{2} \omega_{2} / \delta_{1} \omega_{1}+\ldots\right)\left(X^{3}-1\right)+\left(X^{3} \sqrt{F_{0}} / 2\right) d^{2} F_{0} / d X^{2}+ \tag{2.6}\\
+\mu_{1}\left(X^{3} \sqrt{F_{0}} / 2\right)\left[\left(F_{1} / 2 F_{0}\right) d F_{0} d X^{2}+d^{2} F_{1} / d X^{2}\right]-\delta_{1}^{2 / 3}\left(3 X^{3} \sqrt{F_{0}} \omega_{1}{ }^{2 / 3} 8\right) d^{2} F_{0}^{2} / d X^{2} .
\end{gather*}
$$

Из сопоставления порядков слагаемых в (2.6) получим

$$
\begin{equation*}
d^{2} F_{0} / d X^{2}=2(X-1) / X^{3} \bar{v} \overline{F_{0}}, \quad F_{0}(1)=d F_{0}(1) / d X=0 \tag{2.7}
\end{equation*}
$$

При $X \gg 1$ решение (2.7) представляется рядом

$$
\begin{equation*}
F_{0}(X)=c_{1} X+c_{2}+\left(8 / 3 \sqrt{c_{1}}\right) X^{-1 / 2}+\ldots \tag{2.8}
\end{equation*}
$$

Уравнение для $F_{1}(X)$ будет найдено позже, когда выяснится характер зависимостей $\mathrm{Bo} / \delta_{1}(\mathrm{Bo})$ и $\delta_{1}^{2 / 3}$ (Во).

Возвращаясь к внещней области, после подстановкй (2.1), (2.2) в
(1.4), (1.5) и группировки слагаемых одинакового порядка приходим к. уравнениям, определяющим $f_{0}(x), f_{1}(x)$

$$
\begin{align*}
& 1+\frac{\overline{\sqrt{f_{0}}}}{2} \frac{d}{d x}\left\{\frac{d f_{0} / d x}{\left(1+f_{0}\right)^{3 / 2}}\right\}=0, \quad x \rightarrow \infty, \quad f_{0} \rightarrow \infty \tag{2.9}\\
& v_{1}(\mathrm{Bo})=\delta_{1}(\mathrm{Bo}) \\
& \frac{\omega_{1}}{x^{2}}+\frac{f_{1}}{2 f_{0}}=\frac{d}{d x}\left\{\frac{d f_{1} / d x-\left[3 f_{1} / 2\left(1+f_{0}\right)\right] d f_{0} / d x}{\left(1+f_{0}\right)^{1 / 2}}\right\}
\end{align*}
$$

Из (2.9) находим

$$
\begin{equation*}
2 \sqrt{2}(x+C)=\int_{0}^{f_{0}(x)} \frac{d f_{0}}{\left.\left(1+f_{0}\right)^{3 / 2}\left[1-\sqrt{f_{0} /\left(1+f_{0}\right.}\right)\right]^{1 / 2}} \tag{2.11}
\end{equation*}
$$

где C - постоянная интегрирования.
Традиционная процедура сращивания (2.2) и (2.3) позволяет определить главный член разложения (2.1). Условие сращивания дает

$$
\begin{equation*}
\lim _{\mathrm{Bo} \rightarrow 0} \frac{f\left(x_{1}\right)-\omega^{2_{\mathrm{s}}} F\left(x_{1}\right)}{\gamma(\mathrm{Bo})}=0 \tag{2.12}
\end{equation*}
$$

где $x_{1}=x / \varphi(\mathrm{Bo})$ - промежуточная переменная, $\mathrm{Bo}^{1 / 2} \ll \varphi(\mathrm{Bo}) \ll 1, \gamma(\mathrm{Bo}) \rightarrow 0$ при $\mathrm{Bo} \rightarrow 0$.

Соответствующие разложения в промежуточной области представим в виде

$$
\begin{align*}
& f\left(x_{1}\right)=f_{0}\left(\varphi x_{1}\right)+\ldots=f_{0}(0)+\varphi(\mathrm{Bo}) x_{1} f_{0}^{\prime}(0)+\ldots \\
& F\left(x_{1}\right)=F_{0}\left(\mathrm{Bo}^{-1 / 2} \varphi x_{1}\right)+\ldots \tag{2.13}
\end{align*}
$$

Поскольку $\mathrm{Bo}^{-1 / 2} \varphi(\mathrm{Bo}) \gg 1$, то ряд для $F\left(x_{1}\right)$, в соответствии с (2.8) записывается в виде

$$
\begin{equation*}
F\left(x_{1}\right)=C_{1} \mathrm{Bo}^{-1 / 2} \varphi(\mathrm{Bo}) x_{1}+C_{2}+\ldots \tag{2.14}
\end{equation*}
$$

Подставляя (2.1), (2.13), (2.14) в (2.12), получим

$$
\begin{aligned}
& \lim _{\mathrm{Bo} \rightarrow 0}\left\{f_{0}(0)+\varphi(\mathrm{Bo}) x_{1} f_{0}^{\prime}(0)+\ldots-\right. \\
& -\delta_{1}^{2 /}(\mathrm{Bo}) \omega_{1}^{2 / 2}\left[1+2 \delta_{2}(\mathrm{Bo}) \omega_{2} / 3 \delta_{1}(\mathrm{Bo}) \omega_{1}+\ldots\right] \times \\
& \left.\times\left[C_{1} \mathrm{Bo}^{-1 / 2} \varphi(\mathrm{Bo}) x_{1}+C_{2}+\ldots\right]\right\} / \gamma(\mathrm{Bo})=0
\end{aligned}
$$

Если в последнем выражении положить $\gamma(\mathrm{Bo})=1$, то имеем

$$
\begin{equation*}
f_{0}(0)=O\left(\mathrm{Bo}^{1 / 2}\right) \tag{2.15}
\end{equation*}
$$

Условие (2.15) позволяет разложить подынтегральное выражение (2.11) при малых x в ряд и проинтегрировать его; в результате получим

$$
\begin{equation*}
2 \sqrt{2}(x+C)=\left\{f_{0}+f_{0}{ }^{3 / 2} / 3-9 f_{0}^{2} / 16+\ldots\right\} \tag{2.16}
\end{equation*}
$$

Обращая ряд (2.16), найдем

$$
\begin{equation*}
f_{0}(x)=2 \sqrt{2}(x+C)-4 \sqrt[4]{2}(x+C)^{y / 2} / 3+35(x+C)^{2} / 6+\ldots \tag{2.17}
\end{equation*}
$$

Наконец, подставляя в (2.12) разложения (2.1), (2.14), (2.17) и полагая $\gamma(\mathrm{Bo})=\varphi(\mathrm{Bo})$, находим

$$
\begin{equation*}
\delta_{1}(\mathrm{Bo})=\mathrm{Bo}^{3 / 4}, \quad \omega_{1}=2^{1 / 4} / C_{1}^{1 / 2} \tag{2.18}
\end{equation*}
$$

Последующая подстановка $\delta_{1}(\mathrm{Bo})$ и ω_{1} в (2.6) дает возможность составить уравнение для $F_{1}(X)$ во внутренней задаче

$$
\begin{align*}
& \mu_{1}(\mathrm{Bo})=\mathrm{Bo}^{1 / 4} \\
& \frac{d^{2} F_{1}}{d X^{2}}+\frac{F_{1}(X-1)}{F_{0}^{1 / 2} X^{3}}+\frac{2\left(X^{3}-1\right)}{\omega_{1} X^{3} \sqrt{F_{0}}}=0 \tag{2.19}\\
& F_{1}(1)=d F_{1}(1) / d X=0
\end{align*}
$$

Решение уравнения (2.19) при $X \gg 1$ представимо в виде

$$
F_{1}(X)=-\frac{8 X^{3 / 2}}{3 \omega_{1} \sqrt{C_{1}}}+A X-\frac{4 C_{2} X^{1 / 2}}{\omega_{1} C_{1}^{3 / 2}}+B+\ldots
$$

Последовательное сравнение порядков величин в (2.12) показывает, что для определения $\delta_{2}(\mathrm{Bo})$ и ω_{2} необходимо выполнить сращивание разложений $f(x)$ и $F(X)$ до величин порядка $\mathrm{Bo}^{1 / 2}$. А так как, согласно $(2.10),(2.18), v_{1}(\mathrm{Bo})=\mathrm{Bo}^{3 / 4}$, то при сращивании во внешнем разложении достаточно удержать только одно слагаемое $f_{0}(x)$.

Процедура сращивания аналогична использованной выше. Так, последовательно полагая $\gamma(\mathrm{Bo})=\mathrm{Bo}^{1 / 2}$ и $\gamma(\mathrm{Bo})=\varphi(\mathrm{Bo}) \mathrm{Bo}^{1 / 4}$, получим

$$
\begin{equation*}
C=\mathrm{Bo}^{1 / 2} C_{2} / C_{1}, \quad \delta_{2}(\mathrm{Bo})=\mathrm{Bo}, \quad \omega_{2}=-2^{5 /} 4 A / C_{1}^{5 / 2} \tag{2.20}
\end{equation*}
$$

В итоге из (2.1), (2.18), (2.20) приходим к двухчленной формуле для собственного значения

$$
\begin{equation*}
\omega=\frac{2^{9 / 4} \mathrm{Bo}^{3 / 4}}{C_{1}^{3 / 2}}-\frac{2^{5 / 4} 3 A \mathrm{Bo}}{c_{1}^{5 / 2}}+O\left(\mathrm{Bo}^{5 / 4}\right) \tag{2.21}
\end{equation*}
$$

Постоянные C_{1} и A, входящие в окончательный результат (2.21), находились численным интегрированием на ЭВМ уравнений (2.7), (2.19). Было найдено

$$
C_{1}=1.286, \quad A=-0.153
$$

Отметим, что отличие приведенного численного значения C_{1} от данных [${ }^{1,2}$], по-видимому, объясняется разной точностью вычисления. Отметим, что приведенное здесь значение с точностью до четырех знаков совпадает с величиной C_{1} из работы [${ }^{8}$].

Использование (2.21) при обработке экспериментальных данных позволяет находить вязкость η или коэффициент поверхностного натяжения σ. В размерных переменных формула (2.21) имеет вид

$$
\begin{align*}
& \left(\frac{\eta V}{\sigma}\right)=1.087 \frac{h_{0}^{3 / 2}(\rho g)^{2 / 4}}{\sigma^{3 / 4}}\left[1+0.178\left(\frac{h_{0}{ }^{2} \rho g}{\sigma}\right)^{1 / 4}\right]+ \tag{2.22}\\
& +O\left(\left(\frac{h_{0}{ }^{2} \rho g}{\sigma}\right)^{5 / 4}\right)
\end{align*}
$$

По экспериментальным данным [${ }^{3}$], число Бонда меняется в диапавоне $0.01 \leqslant$ Во $\leqslant 1$. Вклад второго слагаемого относительно главного члена (2.22) при таких Во составляет $5.7-17.9 \%$.

Разрешая (2.22) относительно коэффициента поверхностного натяжөния σ, получим

$$
\sigma=0.716 \frac{(\eta V)^{4}}{h_{0}{ }^{6}(\rho g)^{3}}\left[1-0.714\left(\frac{h_{0}{ }^{2} \rho g}{\sigma}\right)^{1 / 4}\right]+O\left(\left(\frac{h_{0}{ }^{2} \rho g}{\sigma}\right)^{s / 4}\right)
$$

Из этого выражения следует, что первое слагаемое определяет σ с точностью до 5% лишь при Во $<2.4 \cdot 10^{-5}$.

Для практических приложений большой интерес представляет зависимость числа Во от безразмерной скорости движения пластины ω. Поскольку Во и ω малы, то функцию $\mathrm{Bo}(\omega)$ представим в виде ряда

$$
\begin{equation*}
\mathrm{B} \mathrm{o}=b_{1} \omega^{\alpha}+b_{2} \omega^{\beta}+\ldots \tag{2.23}
\end{equation*}
$$

C учетом (2.3) из (2.21) получим

$$
\mathrm{Bo}=C_{1}{ }^{2} \omega^{1 / 3} / 8+C_{1}{ }^{3 / 2} A \omega^{5 / 3} / 2^{11 / 4}+O\left(\omega^{2}\right)
$$

Окончательный результат в размерных переменных для толщины увлекаемой пленки h_{0} запишется в виде

$$
\begin{equation*}
h_{0}=0.946 \frac{(\eta V)^{2 / 2}}{(\rho g)^{1 / 2} \sigma^{1 / \varphi}}\left[1-0.116\left(\frac{\eta V}{\sigma}\right)^{1 / 3}\right]+O\left(\left(\frac{3 \eta V}{\sigma}\right)^{4 / 3}\right) \tag{2.24}
\end{equation*}
$$

Видно, что главный член разложения (2.24) совпадает с результатами [${ }^{1,2}$] и определяет h_{0} с точностью до 5% при ($\eta V / \sigma$) $\leqslant 0.08$.

Поступила 28 V 1979

ЛИТЕРАТУРА

1. Ландау Л. Д. Собр. тр., т. 1. М., «Наука», 1969, стр. 412.
2. Дерягин Б. В. О толщине слоя жидкости, остающегося на стенках сосудов после их опорожнения, и теории нанесения фотоәмульсии при поливе кинопленки. Докл. АН СССР, 1943, т. 39, № 1.
3. Дерягин Б. В., Титиевскал А. С. Экснериментальное изучение толщины слоя жидкости, оставляемого на твердой стенке позади отступающего мениска. Докл. АН СССР, 1945, т. 50, стр. 307.
4. Зельдович Я. Б. К теории распространения пламени. Ж. физ. химии, 1949, т. 22, вып. 1.
5. Берман В. С., Рязанцев Ю. С. К анализу задачи о тепловом распространении пламени методом сращиваемых асимптотических разложений. ПММ, 1972, т. 36 , ֵ. 4.
6. Железный $Б$. В. Динамика отступающего мениска жидкости в капилляре с учетом специфических свойств тонких пленок. ПМТФ, 1976, 응.
