# ГИДРОДИНАМИЧЕСКИЕ СИЛЫ ПРИ УДАРЕ ТУПЫХ ТЕЛ О ПОВЕРХНОСТЬ СЖИМАЕМОИ ЖИДКОСТИ 

В. А. ЕРОПИН, Н. И. РОМАНЕНКОВ, И. В. СЕРЕБРЯКОВ, Ю. Л. ЯКИМОВ

(Москва)
Исследованию влияния сжимаемости при ударе тупых тел о поверхность жидкоєти посвящено большое количество теоретических и экспериментальных исследований [ ${ }^{1-5}$ ], так как оценки сил по теории несжимаемой жидкости в ряде случаев оказываются сильно завышенными. Например, максимальное значение ударной силы для конуса с углом раствора $170^{\circ}$ при числе Маха $M=0.35$ ( $M=v / a, v$ - скорость удара, $a$ - скорость звука в жидкости), рассчитанное по теории несжимаемой жидкости, почти в пять раз превышает действительное значение силы.

Теоретическое исследование удара тупых тел о поверхность жидкости представляет большие трудности. Аналитические решения получены лишь в акустическом приближении при симметричном вертикальном ударе о поверхность сжимаемой жілкости тел простейшей формы (диск, тупой конус) $\left.{ }^{3-5}\right]$. Имеющиеся аналитические решения позволяют оценивать максимальные значения сил при ударе тупых тел о поверхность сжимаемой жидкости, а в отдельных случаях имеет место количествснное совпадение. Однако характер нарастания силы до максимума эти решевия даюе качественно описывают не всегда верно. В статье исследована зависимость от ьремени ударных нагрузок, действующих на диск, тупые конусы с углами раствора 150 , $160,170^{\circ}$ и полусферу при ударе о поверхность сжимаемой жидкости для чисел Маха от нуля до 0.7. Приведенные экспериментальные результаты получены двумя методами: во всем диапазоне чисел Маха путем физического моделирования при ударе тел о поверхность жидкости с низкой скоростью звука и в диапазоне $0.05-0.15$ при ударе диска о воду. В зависимости от числа Маха определены значения максимальных ударных коэффициентов сопротивления и безразмерного времени нарастания силы до максимума. Проведен анализ полученных экспериментальных результатов и имеющихся теоретических решений.

1. Моделирование движения тел в сжимаемой жидкости. При моделировании движения тел в сжимаемой жидкости одним из основных параметров подобия является число Маха и проведение экспериментов при использовании в качестве рабочей жидкости воды или любой другой капельной жидкости встречает значительные трудности, так как в связи с большой скоростью звука в жидкостях учет сжимаемости приводит к необходимости проведения экспериментов при большой скорости движения и крайне малом времени протекания процесса. Стремление уменьшить скорость движения и растянуть процесс по времени при сохранении числа Маха приводит к необходимости использования в качестве рабочей жидкости среды с низкой скоростью звука. В качестве такой жидкости можно взять мелкодисперсную среду - жидкость с пузырьками газа, скорость звука в которой значительно ниже, чем в воде, и зависит от объемной концентрации газа.

При ударе тел о воду, когда давления не превосходят 30000 атм, даже при наличии ударных волн движение можно считать баротропным, $\rho=\rho(P)$, причем изотерма при $T=290^{\circ} \mathrm{K}$, изэнтропа и ударная адиабата практически совпадают. Если пренебречь весомостью и вязкостью, то в задачу помимо начальной плотности, параметров, характеризующих гео-

метрию тела и его движение, констант, характеризующих функцию $\rho(P)$, входит давление на свободных поверхностях. В дальнейшем будем предполагать, что давления на этих поверхностях одинаковы и равны $P_{0}$ (если не равны и ими нельзя пренебречь, то соответствующая разность давлений должна быть специально организована в модельном эксперименте).

Представим $\rho(P)$ в виде

$$
\begin{equation*}
\rho=\rho_{0} f\left(\frac{\Delta P}{\rho_{0} a_{0}^{2}}\right) \tag{1.1}
\end{equation*}
$$

где $\rho_{0}, a_{0}$ - плотность и скорость звука в воде в невозмущенном состоянии, $\Delta P=P-P_{0}, f$ - безразмерная функция. Таким образом, помимо констант, характеризующих геометрию и движение тела (в простейшем случае линейный размер $L$, начальная скорость $v_{0}$ и масса $m$ ), в уравнения движения воды, условия на ударной волне, начальные условия для воды (предполагаем для простоты, что до удара тела о воду последняя покоилась) и условия на свободных поверхностях входят в качестве определяющих параметров еще только $\rho_{0}, a_{0}$, а также безразмерная функция $f$.

Из перечисленных параметров можно составить только следующие критерии подобия: $m / \rho_{0} L^{3}, v_{0} / a_{0}$. Обеспечение первого критерия не вызывает затруднений, а для обеспечения второго крайне желательно в моделируіющей среде иметь низкую скорость звука при идентичной с водой зависимостью $f$. Заметим, что $f(0)=f^{\prime}(0)=1$. Это свойство $f$ непосредственно следует из равенств:

$$
\left.\rho\right|_{\triangle P=0}=\rho_{0},\left.\quad \frac{d P}{d \rho}\right|_{\Delta P=0}=\frac{1}{a_{0}{ }^{2}}
$$

Поэтому при не очень больших давлениях, когда можно ограничиться линейной связью между давлением и плотностью, для моделирования достаточно выполнения условий: $m / \rho_{0} L^{3}=$ const, $v_{0} / a_{0}=$ const.

Рассмотрим моделирующую мелкодисперсную среду - смесь жидкости c пузырьками газа. Уравнение состояния подобных́ сред при пренебрежении поверхностным натяжением и массой газа по сравнению с массой

$$
\begin{aligned}
& \text { воды можно представить в виде } \\
& \rho_{0}=\rho_{0}\left[\left(1-\alpha_{0}\right)+\alpha_{0}\left(1+\frac{\gamma}{\alpha_{0}} \frac{\Delta P}{\rho_{0} a_{0}^{2}}\right)^{-1 / \gamma}\right]^{-1}
\end{aligned}
$$

тде $\alpha_{0}$ - объемная концентрация газа, $\gamma$ - показатель адиабаты. Таким образом, функция $f$ для такой среды зависит только от величины параметра $\alpha_{0}$. В работе [ ${ }^{2}$ ] показано, что при $\alpha_{0}=1 / 3$ безразмерные функции $f$ для воды и для пузырьковой среды практически совпадают и она хорошо моделирует свойства воды. Этот вывод был подтвержден экспериментами по определению скорости распространения ударных волн в зависимости от их интенсивности в вязкой жидкости, равномерно насыщенной мелкими пузырьками газа диаметром порядка 0.05 мм при объемной концентрации газа до $35 \%$. Таким образом, равенство чисел Маха при совпадении безразмерных уравнений состояния воды и модельной жидкости наряду с геометрическим подобием, подобием в распределении масс и др. ведет к соответствию динамических и кинематических процессов, протекающих в этих жидкостях.
2. Методика проведения экспериментов. Рассмотрим вход тела в воду. В общем случае для тупого тела сложной формы, движущегося с большой скоростью, максимальное значение действующей на него силы можно представить в виде

$$
F_{\max }=1 / 2 \rho v_{0}^{2} S C_{x}^{\max }(\mathrm{M}, \mathrm{Re}, \mathrm{Fr})
$$

где $\rho$ - плотность жидкости, $v_{0}$ - скорость тела, $S$ - характерная площадь, а $C_{x}{ }^{\text {max }}$ - безразмерная функция, зависящая в общем случае от чисел Маха $M=v_{0} / a_{0}$, Рейнольдса $\operatorname{Re}=v_{0} L / v$ и Фруда $\mathrm{Fr}=v_{0} / \sqrt{g L}$, где $g$-ускорение силы тяжести, $L$ - характерный линейный размер и $v$ - кинематическая: вязкость. Влияние чисел Рейнольдса и Фруда на ударные нагрузки при


Фиг. 1
входе тупых тел в жидкость несущественно, т. е. в дальнейшем будем считать, что $C_{x}^{\text {max }}=C_{x}^{\text {max }}(M) \quad$ и определять эту зависимость экспериментально. Аналогичным образом можно найти и другие динамические и кинематические параметры.

Эксперименты по определению ударных нагрузок при вертикальном симметричном входе тел в среду с низкой скоростью звука проводились с моделями весом $4-5$ кг при диаметре головной части 80 мм. Скорость модели изменялась в пределах $3-16$ м/сек и измерялась с помощью фотоэлементов' с выходом на цифровой индикатор времени. В процессе входа в воду с помощью электронного осциллографа производилась регистрация ускорения модели и скорости звука в среде $a_{0}$, которая определялась как скорость распространения возмущений вблизи свободной поверхности (перепад давления в волне сжатия составлял $\sim 0.01$ атм). Плотность жидкости измерялась денсиметрами. Полученные в экспериментах значения $a_{0}$ сравнивались с теоретическими (адиабатическими) значениями

$$
a_{0}=\sqrt{\frac{\gamma P_{0}}{\rho_{0} \alpha_{0}}}, \quad \rho_{0}=\rho_{f}\left(1-\alpha_{0}\right)
$$

где $P_{0}$ - давление на свободной поверхности, $\rho_{f}$ - плотность несущей жидкости. В основном расхождение теоретических и әкспериментальных значений скорости звука лежит в пределах $\pm 5 \%$. Отличие, по-видимому, объясняется некоторой неоднородностью жидкости (денсиметр определяет среднюю плотность жидкости в слое $10-15$ см) и неодновременностью измерений. Отметим, что изотермическая скорость звука ( $\gamma=1$ ) дает заниженное значение $a_{0}$.

Величина максимального ускорения модели $w$, время нарастания силы и время распространения возмущений определялись из осциллограмм (фиг. $1, a$ ), где 1,2 - сигналы датчиков ускорения и давления, $t$ - время нарастания силы, $t_{a}$ - время распространения возмущения по свободной поверхности. Максимальные значения ударного коэффициента сопротивления $C_{x}^{\max }$ и безразмерное время нарастания силы $\tau_{\max }$ определялись по формулам

$$
C_{x}^{\max }=\frac{F_{\max }}{1 / 2 \rho v_{0}^{2} S}, \quad \tau_{\max }=\frac{\nu_{v} t}{R}
$$

где $F_{\max }=m w, m$ - масса модели, $S$ - площадь миделя.
Эксперименты по входу в среду с низкой скоростью звука были сопоставлены с экспериментами по входу в воду. При этом модель представляла сплошной титановый цилиндр диаметром 30 мм, длиной 120 мм и выстреливалась из пневмопушки в воду со скоростями 100-200 м/сек. Для определения скорости модели и ускорения ее верхнего основания использовалась фотоэлектронная система с источником и приемником света, перекрываемым летящим телом, и электронная схема с двойным дифференцированием электрического сигнала [$]$. Определение скорости модели и калибровка сигнала ускорения производились на начальном клиновидном участке формирователя светового потока, а определение ускорения верхнего основания - на прямоугольном участке (фиг. 1, б), где 1калибровочный сигнал при прохождении цилиндром клиновидного участка, 2 - сигнал ускорения, $t$ - время нарастания ускорения до максимума.

Величина удельного давления на нижнем основании цилиндра при его плоском ударе о воду определялась из соотнощения в волне сжатия $P=k \rho c \Delta v$, где $\rho$ - плотность материала модели, $c$ - скорость звука в ней, $\Delta v$ - изменение скорости верхнего основания цилиндра при отражении от него волны сжатия. Ввиду существенной неодномерности волны давления коэффициент $k$ не равен $1 / 2$, как это следует из одномерной теории, и в общем случае зависит от длины модели, формы ее головной части и относительной щирины щели. Однако при плоском ударе сплошного однородного цилиндра о воду оказалось, что в исследованном диапазоне изменения этих параметров коэффициент $k$ можно считать постоянным. Его величина была определена при небольших числах Маха из условия радра с водйлении на контактной поверхности нижнего основания цилинблизкой к единице $(k=1)$.
3. Обсуждение экспериментальных результатов. Приведем экспериментальные значения $C_{x}^{\text {ma }}$ и $\tau_{\max }$ при вертикальном симметричном входе в воду диска, тупых конусов и полусферы.

На фиг. 2 изображена зависимость $C_{x}^{\text {max диска от числа Маха (точка- }}$ ми 1 ивображены эксперименты по входу в среду с низкой скоростью ввука, точками 2-при входе в воду). Пунктирной линией проведено


Фиг. 2


Фиг. 3
акустическое решение $\left[^{3}\right] \quad\left(C_{x}^{\max }=2 / M\right)$, которое при малых значениях числа Маха удовлетворительно согласуется с экспериментальными результатами, а затем уходит вниз, причем асимптотика акустического рещения при больших значениях числа Маха, по-видимому, неверна. Если не учитывать влияния воздушной подушки, то оценки максимального значения ударной силы сверху и снизу, очевидно, имеют вид

$$
\rho_{0} v_{0} a_{0} S<F_{\max }<\rho_{0} v_{0} D S
$$

где $D$-скорость ударной волны, $S$ - площадь диска. Однако, согласно $\left[{ }^{7}\right], D \approx a_{0}(1+2 M)$ и для $C_{x}^{\max }$ получаем

$$
\frac{2}{M}<C_{x}^{\max }<\frac{2(1+2 M)}{M}
$$

Наличие воздушной подушки приводит к некоторому уменьшению давления на диске, однако с ростом числа Маха $C_{x}^{\max }$, по-видимому, стремится к константе, отличной от нуля (по результатам приведенных выше экспериментов, обсчитанных методом наименьших квадратов, $C_{x}^{\max }=1.87+$ $+2.13 / M)$.


На фиг. 3 приведена зависимость от числа Маха максимального удельного давления на диске. Точками 1 изображены результаты по входу в воду, точками 2 - эксперименты по входу в среду с низкой скоростью звука, пересчитанные на воду по формуле

$$
\begin{equation*}
P_{\max }=\frac{F_{\max }}{S} \frac{\rho_{1} a_{1}{ }^{2}}{\rho_{2} a_{2}{ }^{2}}, \quad M=\frac{v_{1}}{a_{1}}=\frac{v_{2}}{a_{2}} \tag{3.1}
\end{equation*}
$$

где 1 - индекс воды, 2 - индекс среды с низкой скоростью звука. Сплошной линией изображена зависимость $P=\rho_{0} v_{0} D$. Из графика видно, что с ростом числа Маха влияние воздушной подушки растет и при больших числах Маха максимальное давление на диске не может рассчитываться по одномерной теории. Величины давления, полученные при входе диска в воду, близки к значениям давления, полученным по формуле (3.1) при входе в среду с пизкой скоростью звука.

При плоском ударе диска о поверхность жидкости сила, действующая на него, принимает свое максимальное значение не мгновенно. В этом случае происходит захват газа из атмосферы - образуется так называемая воздушная подушка. Как показали эксперименты, время нарастания силы до максимума зависит от числа Маха, причем в результате сравнения этих времен при входе в воду и в среду с низкой скоростью звука оказалось, что имеет место неплохое количественное совпадевие (за время нарастания силы в обоих случаях принималось время нарастания ускорения до максимума). Время нарастания силы до максимума приблизительно равно отношению радиуса диска к скорости звука за фронтом ударной волны $t=$
$=R / a(P)$, где $P$-максимальное удельное давление на диске. На фиг. 4, $a$ приведена зависимость от числа Маха безразмерного времени нарастания силы. Штриховой линией изображена эмпирическая зависимость

$$
\begin{equation*}
\tau_{\max }=\frac{v_{0} t}{R}=\frac{v_{0}}{a(P)} \tag{3.2}
\end{equation*}
$$

точками 1 -результаты по входу в воду, точками 2-по входу в среду с низкой скоростью звука. Из графика видно, что продолжительности продессов нарастания силы, определенные при входе диска с малой скоростью в среду с низкой скоростью звука и при входе диска в воду с большой скоростью, удовлетворительно согласуются между собой и с достаточной точностью описываются формулой (3.2). Таким образом, на основании всех приведенных данных можно утверждать, что эксперименты по входу дисков в среду с низкой скоростью звука правильно описывают как величину, так и характер нарастания силы и подтверждают справедливость предложенной в [ ${ }^{2}$ ] методики моделирования сжимаемости жидкости.

На фиг. 5 приведены зависимости максимальных значений ударных коэффициентов сопротивления диска 1 , тупых конусов с углами раство-


Фиг. 5 ра $170,160,150^{\circ}(2-4)$ и полусферы 5 от числа Маха. Пунктирные линии соответствуют акустическим решениям (при $0<M<$ $<\operatorname{tg} \beta$ - решение [ ${ }^{4}$ ], при $M>$ $>\operatorname{tg} \beta$-решение ${ }^{5}{ }^{5}$ ], где $\beta$ - угол образующей конуса со свободной поверхностью), сплошные линии - экспериментальным результатам, обсчитанным методом наименьших квадратов. При $M=0$ на графиках квадратиками нанесены экспериментальные точки, соответствующие входу конусов и полусферы в несжимаемую жидкость [8-10]. Эти графики дают общую картину зависимости от числа Маха максимальных ударных нагрузок, действующих на тупые тела, а также позволяют установить область применимости акустических решений.

На фиг. 4, 6 построены зависимости безразмерного времени нарастания силы $\tau_{\text {max }}$ на тупых конусах с углами раствора 170 (1), 160 (2) и $150^{\circ}$ (3) от числа Маха. Штриховой линией нанесены результаты акустических решений [4, ${ }^{4}$ ], сплошной линией - результаты экспериментов, обсчитанные методом наименьших квадратов. При $M=0$ квадратиками нанесены экспериментальные значения $\tau_{\max }$ при входе в несжимаемую жидкость. Из графиков видно, что решение ['], построенное для дозвуковой скорости расширения смоченной поверхности конусов $(0<M<\operatorname{tg} \beta)$, хорошо согласуется с әкспериментальными даїными. При сверхзвуковой схеме расширения смоченной поверхности конусов ( $M>$ $>\operatorname{tg} \beta$ ), согласно работе [5] , величина $\tau_{\text {max }}$ перестает зависеть от числа Маха и должна оставаться постоянной, равной отношению высоты кони-

ческой части модели к ее радиусу (в экспериментах уменьшение скорости моделей к моменту достижения силой максимума не превосходило $1 \%$, т. е. влияние изменения скорости модели на величину $\tau_{\max }$ несущественно). Однако, как показали эксперименты, при $M>\operatorname{tg} \beta$ время нарастания силы продолжает увеличиваться и при больших числах Маха приближается к соответствующему времени для диска, т. е. имеет место непрерывный переход от тупых конусов к диску как по величине максимальной силы, так и по времени ее нарастания.

На фиг. 5 наряду с конусами приведена зависимость $C_{x}^{\max }$ от числа Маха для полусферы. При $M=0$ квадратиком нанесена экспериментальная точка, соответствующая входу полусферы в несжимаемую жидкость [ ${ }^{9,10}$ ]. Зависимость $C_{x}^{\max }$ от числа Маха является довольно слабой, хотя влияние сжимаемости в начальной стадии удара весьма существенно. Зависимость безразмерного времени нарастания силы до максимума от числа Маха для полусферы по результатам проведенных экспериментов близка к линейной и может быть представлена в виде

$$
\tau_{\max }=0.07+0.62 M, \quad 0<M<0.7
$$

Поступила 31 V 1979

## ЛИТЕРАТУРА

1. Седов Л. И. Методы подобия и размерности в механике. М., «Наука», 1972.
2. Якимов Ю. Л., Ерошии В. А., Романенков Н. И. Моделирование движения тела в воде с учетом ее сжимаемости. В сб. Некоторые вопросы механики сплошной среды. М., Изд-во Моск. ун-та, 1978.
3. Поручиков В. Б. Удар диска по поверхности идеальной сжимаемой жидкости. ПММ, 1964, т. 28, вып. 4.
4. Поручиков В. Б. Проникание конуса в сжимаемую жидкость. ПММ, 1973, т. 37, вып. 1.
5. Скалак, Фейт. Удар о поверхность сжимаемой жидкости. Конструирование и технология машиностроения, 1966, т. 88, № 3.
6. Серебряков И. В. Устройство для определения ускорения. Авт. свид. № 638897. Открытия, изобретения, пром. образцы и товарные знаки, 1978, № 47.
7. Яковлев Ю. С. Гидродинамика взрыва. Л., Судпромгиз, 1961.
8. Логвинович $Г$. В. Гидродинамика течений со свободными границами. Киев, «Наукова думка», 1969.
9. Шорыгин О. П. Погружение в жидкость тел вращения простейших форм под углом к свободной поверхности, В сб. Неустановившиеся течения воды с больпими скоростями. М., «Наука», 1973.
10. Лотов А. В. Об ударе шара о поверхность воды. Уч. зап. ЦАГИ, 1971, т. 2, вып. ц.
