# MEXAHИKA. <br> ЖИДКОСТИИГАЗА <br> № 6 • 1980 

# К ТЕОРИИ НЕСТАЦИОНАРНЫХ ВИХРЕИ В ИДЕАЛЬНОИ ЖИДКОСТИ 

К. М. МИНДЛИН

(Горький)


#### Abstract

В работе формулируются уравнения, описывающие эволюцию области с отлич-


 дой от нуля завихренностью. Получено решение этих уравнений на ограниченном интервале времени для областей, имеющих в начальный момент форму сферы или кругового цилиндра. Показано, что сферический вихрь, возникший в покоящейся среде, начинает двигаться, вытягиваясь в направлении движения; дилиндрический вихрь иод влиянием неравномерности интенсивности вихря на его границе изменяет свою скорость по величине и нащравлению, описывая криволинейную траекторию. Полутены формулы, описывающие начальный этап эволюции жидкой сферы одной плотности в жидкой среде другой плотности.Пусть в момент $t=0$ в объеме, ограниченном поверхностью $V=0$ (фигура), вавихренность $\delta=\operatorname{rot} q \neq 0$ ( $q$ - скорость жидкости), а вне его $\delta=0$. Будем далее называть такой объем вихрем. Эволюпия вихря при $t>0$ изучена в исключительных случаях. Круговой дилиндрический вихрь и вшхрь Хилла являются стационарными; они сохраняют свою форму и скорость [ ${ }^{1}$ ]. Нестадионарным вихрям посвящены работы $\left[{ }^{2,3}\right]$.

В предлагаемой работе изучается класс нестационарных вихрей, ограниченных вихревой поверхностью, в окрестности которой разрывна касательная составляющая вектора скорости.

1. Условия на вихревой поверхности. Рассмотрим идеальную, несжимаемую жидкую среду, разделенную на части вихревой поверхностью $V=$ $=0$ (фигура). Жидкость находится в поле силы тяжести, направленной вниз параллельно оси $x$. Движение предполагается осесимметричным с осью симметрии $x$. При сделанных предположениях существует функция тока $\Psi\left[{ }^{1}\right]$.

Пусть $\mathcal{\xi}=\zeta i_{z}, i_{z}$ - орт, нормальный к меридиональной плоскости. Завихренность $\zeta$ удовлетворяет уравнению [ ${ }^{1}$ ]

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}+\frac{\partial \psi}{\partial x} \frac{\partial}{\partial y}\left(\zeta y^{k}\right)-\frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\zeta y^{k}\right)=(\operatorname{grad} P \times \operatorname{grad} W) \cdot i_{z} \tag{1.1}
\end{equation*}
$$

Здесь $k=-1$ (в п. $6 k=0$ ), $t$ - время, $P$ - давление, $\rho$ - плотность, $W=$ $=\rho^{-1}$ - удельный объем, в правой части уравнения стоит смешанное произведение трех векторов.

На поверхности $\bar{V}=0$ скачком изменяется касательная к ней составляющая скорости. Это означает, что $\zeta=B(x, y, t) \delta(V)+C(x, y, t)$, где $\delta(V)$ - функция Дирака, интенсивность завихренности $B(x, y, t)$ опредедена в точках поверхности $V=0, C$ - регулярная составляющая завихренности - определена в жидком объеме; $B$ и $C$ - ограниченные функции.

Составим дифференциальное уравнение для $B(x, y, t)$. Перейдем к криволинейным координатам $u, v$ по формулам $u=U(x, y, t), v=V(x, y, t)$ с якобианом $D \neq 0$. В новых переменных вихревая поверхность описывает«я уравнением $v=0$. Любую функцию $F(x, y, t)$ в новых переменных бу-

дем обозначать $F_{*}(u, v, t)$. Введем обозначения $a_{+}=a^{+}=\lim _{v \rightarrow+0} a, a_{-}=a^{-}=$ $=\lim _{v \rightarrow-0} a:$

$$
\frac{\partial a}{\partial v_{+}}=\lim _{v \rightarrow+0} \frac{\partial a}{\partial v}, \quad \frac{\partial a}{\partial v_{-}}=\lim _{v \rightarrow-0} \frac{\partial a}{\partial v}
$$

Очевидно, $\partial W_{*} / \partial v=\varepsilon(u, t) \delta(b)+h(u, v, t), \varepsilon=W_{+}-W_{-}, h(u, v, t)-$ ограниченная функция; $\varepsilon=0$ в жидкости с непрерывной плотностью.

Перепишем (1.1) в новых переменных, после чего обе части этого уравнения проинтегрируем по $v$ в пределах от $-\gamma$ до $\gamma>0$ и перейдем к пределу при $\gamma \rightarrow 0$; для обобщенных функций полагаем $2 \int a(v) \delta(v) d v=a_{+}+a_{\text {. }}$.

После перехода к пределу, положив
 $B_{*}=A(u, t) D_{*}$, получим

$$
\begin{align*}
& \frac{\partial A}{\partial t}-\frac{1}{2} \frac{\partial}{\partial u} \mathbf{r}^{\prime} A D \cdot ._{\cdot}{ }^{k}\left(\frac{\partial \psi \cdot}{\partial v_{+}}+\right. \\
& \left.\left.+\frac{\partial \psi \cdot}{\partial v_{-}}\right)\right]_{+}-\varepsilon \frac{\partial P_{*}^{+}}{\partial u}=H(u, t)  \tag{1.2}\\
& H(u, t)=A\left[\frac{\partial}{\partial v}\left(\frac{\partial V}{\partial t}\right)+\right. \\
& \left.+y \cdot{ }_{*}^{k} \frac{\partial \psi \cdot}{\partial u} \frac{\partial D \cdot}{\partial v}-\frac{1}{D \cdot} \frac{\partial D \cdot}{\partial t}\right]_{-+}^{-} \\
& -\left[\frac{\partial U}{\partial t} \frac{1}{D \cdot} \cdot \frac{\partial\left(A D_{\cdot}\right)}{\partial u}\right]_{+}
\end{align*}
$$

Производные $\partial P_{*} / \partial u$ и $\partial \Psi_{*} / \partial u$ непрерывны.

Когда вихревая поверхность описывается уравнением $x=V^{*}(y, t)$, полагаем $u=y, v=x-V^{*}(y, t)$ п находим $H \equiv 0$. Если любой луч, выходящий из точки $O_{1}$ (фигура), пересекает поверхность в одной точке, полагаем

$$
\begin{align*}
& x=f(t)+\left[v+1+V^{*}(s, t)\right] s, y=\left[v+1+V^{*}(s, t)\right] \sqrt{1-s^{2}}  \tag{1.3}\\
& s=\cos \theta, r=v+1+V^{*}(s, t), f^{\prime}=d f / d t
\end{align*}
$$

и находим, используя указанную ниже формулу (2.6):

Уравнение (1.2) принимает вид

$$
\begin{equation*}
\frac{\partial A}{\partial t}=\frac{\partial}{\partial s}\left[\frac{A}{2\left(V^{*}+1\right)^{2}}\left(\frac{\partial \psi_{*}}{\partial v_{+}}+\frac{\partial \psi^{*}}{\partial v_{-}}\right)+A f^{\prime}(t) \frac{1-s^{2}}{1+V^{*}}\right]+\varepsilon \frac{\partial P_{\cdot}^{+}}{\partial s} \tag{1.4}
\end{equation*}
$$

2. Уравнения некоторого класса нестационарных вихрей. Пусть вихрь, образованный жидкостью плотности $\rho_{1}=$ const, окружен однородной жидкостью плотности $\rho_{2}$, причем в момент $t=0$ он ограничен поверхностью $V=0$ (фигура), $V=r-1-V_{0}(\cos \theta), V<0-$ внутренность вихря. В сфери-

ческих координатах с полюсом $O_{1}$ (фигура) компоненты абсолютной скорости $q_{r}$ и $q_{\theta}$ и завихренность $\zeta$ связаны с функцией тока соотношенияMи [ ${ }^{1}$ ]

$$
\begin{align*}
& q_{r}=-\frac{1}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta}, \quad q_{\theta}=\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r}, \quad \zeta=\frac{1}{r \sin \theta} E^{2} \psi  \tag{2.1}\\
& E^{2} \psi=\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}-\frac{\cos \theta}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta}
\end{align*}
$$

Уравнения (1.1), (2.1) вместе с уравнением движения и условием несжимаемости

$$
\begin{align*}
& \frac{\partial \mathbf{q}}{\partial t}-\mathbf{q} \times \boldsymbol{\zeta}=-\mathbf{i}_{x}-\frac{1}{2} \operatorname{grad} q^{2}-\frac{1}{\rho} \operatorname{grad} P  \tag{2.2}\\
& d \rho / d t=0 \tag{2.3}
\end{align*}
$$

определяют при заданных начальных и граничных условиях функции $\Psi$, $P, \rho ; \mathbf{i}_{x}$ - орт оси $x$.

Эти уравнения записаны в безразмерных переменных. В качестве основных размерных величин выбраны $\rho_{2}, a$ - характерный линейный размер задачи (если начальная форма вихря - пар, то $a$ - его радиус) и $T=$ $=\sqrt{a / g}$, где $g$ - ускорение свободного падения.

Находящаяся на вихревой поверхности $V(r, \theta, t)=0$ жидкая частица может перемещаться в нормальном к поверхности направлении только вместе с поверхностью; это означает, что функция удовлетворяет уравнению

$$
\begin{equation*}
\left[\frac{\partial V}{\partial t}+\frac{\partial V}{\partial r}\left(q_{r}-f^{\prime} \cos \theta\right)+\frac{\partial V}{r \partial \theta}\left(q_{\theta}+f^{\prime} \sin \theta\right)\right]_{V=0}=0 \tag{2.4}
\end{equation*}
$$

Четную относительно $\theta$ функцию $V$ ищем в виде

$$
\begin{equation*}
V=r-1-V^{*}(\cos \theta, t) \tag{2.5}
\end{equation*}
$$

Используя (1.3) и (2.1), приведем (2.4) к виду

$$
\begin{equation*}
\frac{\partial V^{*}}{\partial t}-\frac{1}{\left(1+V^{*}\right)^{2}} \frac{\partial \psi \psi^{+}}{\partial s}=f^{\prime}(t)\left(s-\frac{1-s^{2}}{1+V^{*}} \frac{\partial V^{*}}{\partial s}\right) \tag{2.6}
\end{equation*}
$$

Можно показать, что объем, ограниченный поверхностью $V=0$, сохраняется постоянным во времени, если $V^{*}(s, t)$ удовлетворяет уравнению (2.6). Следовательно, уравнение (2.3) удовлетворяется, если положить $\rho=1$ при $v>0$ (вне вихря) и $\rho=\rho_{1} / \rho_{2}$ при $v<0$ (внутри вихря).

Уравнение (1.1) удовлетворяется в областях $V \neq 0$, если положить $\zeta=$ $=r^{-1} \sin \theta A \delta(V)+c_{0} y e(V), c_{0}=$ const, $e(v)=0$ при $v>0, e(v)=1$ при $v<0$.

Соотношением $\Psi=r^{2} \sin ^{2} \theta \Phi$ введем $\Phi$ вместо $\Psi$. Для $\Phi, A, P, V^{*}$ из $(2.1),(2.2),(2.6)$ п (1.4), после введения переменных $v, s$ по формулам (1.3), следуют уравнения

$$
\begin{gather*}
L^{2} \Phi_{*}=A(s, t) \delta(v)+c_{0}\left(v+1+V^{*}\right)^{2} e(v)  \tag{2.7}\\
L^{2} \Phi \cdot=\left(v+1+V^{*}\right)^{2} \frac{\partial^{2} \Phi \cdot}{\partial v^{2}}+4\left(v+1+V^{*}\right) \frac{\partial \Phi .}{\partial v}-
\end{gather*}
$$

$$
\begin{aligned}
& -4 s\left(\frac{\partial \Phi \cdot}{\partial s}-\frac{\partial V^{*}}{\partial s} \frac{\partial \Phi \cdot}{\partial v}\right)+\left(1-s^{2}\right)\left[\frac{\partial}{\partial s}\left(\frac{\partial \Phi .}{\partial s}-\frac{\partial V^{*}}{\partial s} \frac{\partial \Phi \cdot}{\partial v}\right)-\right. \\
& \left.-\frac{\partial V^{*}}{\partial s} \frac{\partial}{\partial v}\left(\frac{\partial \Phi \cdot}{\partial s}-\frac{\partial V^{*}}{\partial s} \frac{\partial \Phi \cdot}{\partial v}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial A}{\partial t}=\frac{1}{2} \frac{\partial}{\partial s}\left[\left(1-s^{2}\right) A\left(\frac{\partial \Phi \cdot}{\partial v_{+}}+\frac{\partial \Phi \cdot}{\partial v_{-}}+\frac{4 \Phi \cdot^{+}+2 f^{\prime}}{V^{+}+1}\right)\right]+\varepsilon \frac{\partial P_{+}^{+}}{\partial s}  \tag{2.8}\\
& \frac{\partial P_{\cdot}^{+}}{\partial s}=-\frac{\partial}{\partial s}\left[s\left(V^{\cdot}+1\right)+\frac{1}{2}\left(q_{\theta}{ }^{2}+q_{r}{ }^{2}\right) .^{+}+f^{\prime}\left(q_{\theta} \sin \theta-s q_{r}\right) .^{+}\right]+  \tag{2.9}\\
& +\frac{\partial V^{*}}{\partial t} \frac{\partial q_{r^{*}}{ }^{+}}{\partial s}-\frac{\partial V^{*}}{\partial s} \cdot \frac{\partial q_{r^{+}}{ }^{+}}{\partial t}+\frac{\partial}{\partial t}\left[\left(V^{*}+1\right) q_{\theta \cdot}{ }^{+} / \sin \theta\right] \\
& q_{r^{*}}{ }^{+}=-2 s \Phi .^{+}+\left(1-s^{2}\right)\left(\frac{\partial \Phi .}{\partial s}-\frac{\partial V^{*}}{\partial s} \frac{\partial \Phi .}{\partial v}\right)_{+}  \tag{2.10}\\
& \frac{q_{\theta \cdot}{ }^{+}}{\sin \theta}=2 \Phi{ }^{+}+\left(V^{\bullet}+1\right) \frac{\partial \Phi .}{\partial v_{+}} \\
& \frac{\partial V^{*}}{\partial t}=-\left(2 \Phi_{*^{+}}+f^{\prime}\right)\left(s-\frac{1-s^{2}}{1+V^{*}} \frac{\partial V^{*}}{\partial s}\right)+\left(1-s^{2}\right) \frac{\partial \Phi_{*}{ }^{+}}{\partial s} \tag{2.11}
\end{align*}
$$

B (2.8) $\varepsilon=1-\rho_{2} / \rho_{1}<1$.
Положение подвижных осей $x_{1} y_{1}$ относительно осей абсолютных определяется функцией $f(t)$. Ниже в п. $3-5$ на функцию $f(t)$ накладывается условие

$$
\begin{equation*}
s=0, \quad t \geqslant 0 \quad \partial V^{*} / \partial s=0 \tag{2.12}
\end{equation*}
$$

Это условие фиксирует положение оси $o_{1} y_{1}$ относительно вихря таким образом, что ось $o_{1} y_{1}$ пересекает границу вихря под углом $90^{\circ}$. К уравнениям (2.7) -(2.12) присоединим начальные условия

$$
\begin{equation*}
t=0, \Phi_{*}=\Phi_{0}(v, s), A=A_{0}(s), V^{*}=V_{0}(s), f=0 \tag{2.13}
\end{equation*}
$$

Вследствие (2.7) Фо должна удовлетворять уравнению

$$
\begin{equation*}
L\left(\Phi_{0}\right)=A_{0}(s) \delta(v)+c_{0}\left(v+1+V_{0}(s)\right)^{2} e(v) \tag{2.14}
\end{equation*}
$$

Оператор $L\left(\Phi_{0}\right)$ получается из $L^{2} \Phi_{*}$, если в последнем положить $t=0$.
Ниже изучается эволюция вихря в неограниченной жидкости, так что граничные условия формулируются в виде

$$
\begin{equation*}
v \rightarrow+\infty, \Phi_{*} \rightarrow 0, \partial \Phi_{*} / \partial v \rightarrow 0, \partial \Phi_{*} / \partial s \rightarrow 0 \tag{2.15}
\end{equation*}
$$

При этих условиях жидкость на бесконечности покоится. Из уравнений (2.7)-(2.11) следует, что давление непрерывно при $t \geqslant 0$, если функция $A_{0}(s)$ непрерывна.
3. Эволюция сферического вихря (начальная стадия). Пусть в (2:13) $V_{0}=0$, т. е. в начальный момент вихрь имеет форму пара. Тогда (2.14); принимает вид

$$
\begin{align*}
& L\left(\Phi_{0}\right)=A_{0}(s) \delta(v)+c_{0}(v+1)^{2} e(v)  \tag{3.1}\\
& L(F)=(v+1)^{2} \frac{\partial^{2} F}{\partial v^{2}}+4(v+1) \frac{\partial F}{\partial v}+\left(1-s^{2}\right) \frac{\partial^{2} F}{\partial s^{2}}-4 s \frac{\partial F}{\partial s} \tag{3.2}
\end{align*}
$$

Ищем решение уравнений (2.7) - (2.12) в виде

$$
\begin{align*}
& \Phi_{*}(v, s, t)=\sum_{k>0} \Phi_{k}(v, s) t^{k}, \quad A(s, t)=\sum_{n>0} A_{h}(s) t^{k},  \tag{3.3}\\
& V^{*}(s, t)=\sum_{k>0} V_{k}(s) t^{h}, \cdot f^{\prime}(t)=\sum_{k>0} u_{h} t^{h} \quad\left(u_{h}=\text { const }\right)
\end{align*}
$$

При этом получим ряды по степеням $t$

$$
\begin{equation*}
L^{2} \Phi_{*}=\sum_{k>0} t^{k} L_{k} \Phi_{*}, \quad \partial P_{*}+/ \partial s=\sum_{n>0} B_{k}(s) t^{n} \tag{3.4}
\end{equation*}
$$

Подставляя ряды (3.3), (3.4) в уравнения (2.7)-(2.12), получим уравнения для функций $\Phi_{k}(v, s), A_{k}(s), V_{k+1}(s), u_{k}$. В рамках каждого приближения для $\Phi_{k}(v, s)$ получается уравнение вида

$$
\begin{equation*}
\grave{L}\left(\Phi_{k}\right)=T_{k}(v, s)-\left\{\varepsilon\left[2 \Phi_{k}(0, s)+\frac{\partial \Phi_{k}}{\partial v_{+}}\right]+R_{k}(s)\right\} \delta(v) \tag{3.5}
\end{equation*}
$$

Oператор $L(\Phi)$ определен формулой (3.2), функции $T_{k}(v, s)$ и $R_{k}(s)$ зависят только от решөний предыдущих приближений; для нудевого приближения получим (3.1).

В областях $v>0$ п $v<0$ уравнение (3.5) имеет вид

$$
\begin{equation*}
L\left(\Phi_{k}\right)=T_{k}(v, s) \tag{3.6}
\end{equation*}
$$

Уравнение (3.5) будет удовлетворено, если решения уравнения (3.6) в областях $v>0$ и $v<0$ «состыковать» непрерывно на поверхности $v=0$ так, чтобы для скачка производной $\partial \Phi_{k} / \partial v$ выполнялось равенство

$$
\begin{equation*}
\frac{\partial \Phi_{k}}{\partial v_{+}}-\frac{\partial \Phi_{k}}{\partial v_{-}}=\varepsilon\left[2 \Phi_{k}(0, s)+\frac{\partial \Phi_{k}}{\partial v_{+}}\right]+R_{k}(s) \tag{3.7}
\end{equation*}
$$

В силу (2.15) $\Phi_{k} \rightarrow 0, \partial \Phi_{k} / \partial v \rightarrow 0, \partial \Phi_{k} / \partial s \rightarrow 0$ прп $v \rightarrow+\infty$.
Уравнение $L(F)=0$ имеет решения вида

$$
\begin{align*}
& v<0, \quad F=\sum_{n>0} c_{n} G_{n}(s)(v+1)^{n} ; \quad v>0,  \tag{3.8}\\
& F=\sum_{n \geqslant 0} b_{n} G_{n}(s)(v+1)^{-n-3}
\end{align*}
$$

Здесь $G_{n}(s)=a_{0}+\ldots+a_{n} s^{n}$ - многочлен с целыми коәффициентами, определяемыми формулой

$$
\begin{aligned}
& a_{m+2}=a_{m}(m-n)(m+n+3) /(m+2)(m+1), \text { так что } G_{0}=1, G_{1}=s, \\
& G_{2}=1-5 s^{2}, G_{3}=3 s-7 s^{3}, \ldots
\end{aligned}
$$

Выполнение условия (3.7) обеспечивается выбором произвольных постоянных $c_{n}, b_{n}$ в (3.8).

Пусть $A_{0}(s)=a_{0}=\mathrm{const}$, тогда (3.1) удовлетворяется при

$$
\begin{align*}
& v<0, \quad \Phi_{0}=0,1 c_{0}\left[(v+1)^{2}-1\right]-b_{0} ; \quad v>0, \quad \Phi_{0}=-b_{0}(v+1)^{-3}  \tag{3.9}\\
& 3 b_{0}=a_{0}+c_{0} / 5 \tag{3.10}
\end{align*}
$$

Равенство (3.10) следует из условия $\frac{\partial \Phi_{0}}{\partial v_{+}}-\frac{\partial \Phi_{0}}{\partial v_{-}}=A_{0}(s) . \quad$ Из (2.11) и (2.12) находим $u_{0}=2 b_{0}, V_{1}=0$.

Уравнения первого приближения. Из (2.7)-(2.10) следует

$$
\begin{aligned}
& L_{1} \Phi_{*}=A_{1}(s) \delta(v), L_{1} \Phi_{*}=L\left(\Phi_{1}\right), A_{1}=-s\left(3 b_{0}+c_{0} / 5\right) a_{0}+\varepsilon B_{0} \\
& B_{0}=-1+9 b_{0}^{2} s+2 \Phi_{1}(0, s)+\partial \Phi_{1} / \partial v_{+} .
\end{aligned}
$$

Отсюда для $\Phi_{1}$ получается уравнение

$$
\begin{align*}
& L\left(\Phi_{1}\right)=\left\{-\varepsilon-h s+\varepsilon\left[2 \Phi_{1}(0, s)+\frac{\partial \Phi_{1}}{\partial v_{+}}\right]\right\} \delta(v)  \tag{3.11}\\
& h=9 b_{0}{ }^{2}(1-\varepsilon)-\left(c_{0} / 5\right)^{2}
\end{align*}
$$

Решение уравнения (3.11) ищем в виде

$$
v<0, \Phi_{1}=b_{1}+c_{1} s(v+1), v>0, \Phi_{1}=b_{1}(v+1)^{-3}+c_{1} s(v+1)^{-4}
$$

Условие (3.7) дает $c_{1}=h(5-2 \varepsilon)^{-1}, b_{1}=\varepsilon(3-\varepsilon)^{-1}$. Из (2.11) и (2.12) следует $u_{1}=-2 b_{1}, 2 V_{2}=c_{1}\left(1-3 s^{2}\right)$. Для границы вихря, согласно (2.5), получаем уравнение $r=1+t^{2} V_{2}+o\left(t^{2}\right)$, из которого видно, что на начальной стадии эволюции вихрь сжимается вдоль оси $x$, если $c_{1}>0$ (т. е. если начальная скорость $2 b_{0}$ вихря достаточно велика), и растягивается вдоль оси $x$, если $c_{1}<0$. Вихрь приобретает вертикальное ускорение $-2 b_{1}$, знак которого зависит от соотношения плотностей внутри и вне вихря.

При $c_{1}=0$ для границы вихря следует уравнение

$$
\begin{aligned}
& r=1+1 / 3 c_{2}\left(1-3 s^{2}\right) t^{3}+\left[{ }^{1} / c_{3}\left(1-3 s^{2}\right)+d s^{3}\right] t^{4}+o\left(t^{4}\right), \quad c_{2}=-3 b_{0} m, \\
& c_{3}=b_{1} m, m=3 b_{1}(1-\varepsilon)(5-2 \varepsilon)^{-1}, d=15 b_{0} c_{2}(1-\varepsilon)(7-3 \varepsilon)^{-1}
\end{aligned}
$$

Задача об эволюции вихря при начальных условиях (3.9) изучалась в работе [ ${ }^{2}$ ]. Авторы этой работы заменили уравнение (1.1) приближенным и изучили задачу только при $c_{1}=0$, считая это равенство необходимым для непрерывности давления при $t=0$. Но, как отмечалось выше, в силу точных уравнений давление непрерывно при любой непрерывной функции $A_{0}(s)$, т. е. при любом $c_{1}$.
4. Эволюция сферического вихря в однородной жидкости. Для однородной жидкости $\rho_{1}=\rho_{2}, \varepsilon=0$. Уравнения (2.7) -(2.12), (3.1) сохраняют силу. Рассмотрим течение с начальными условиями (3.9). Если в (3.10) $a_{0}=0$, то задача имеет стационарное решение $\Phi_{*}=\Phi_{0}, A=0, V^{*}=0$ - вихрь Хилла. При $a_{0} \neq 0$ решение задачи нестационарно.

Особый интерес представляет случай $b_{0}=0$, когда в начальный момент окружающая вихрь жидкость покоится. При $\varepsilon=0, b_{0}=0$ находим

$$
\begin{aligned}
& v<0: \quad 5 \Phi_{1}=-a_{0}{ }^{2} s(v+1), \\
& \Phi_{2}=\left[-\frac{1}{25} G_{2}(s)(v+1)^{2}+\frac{1}{10}\left(1-3 s^{2}\right)(v+1)+\frac{2}{75}\right] a_{0}{ }^{3} \\
& v>0: 5 \Phi_{1}=-a_{0}{ }^{2} s(v+1)^{-4}, \\
& \Phi_{2}=\left[\frac{1}{15}(v+1)^{-3}+\frac{9}{350} G_{2}(s)(v+1)^{-5}\right] a_{0}^{3}
\end{aligned}
$$

Для границы вихря и его скорости следуют уравнения

$$
\begin{aligned}
& r=1-\frac{1}{10}\left(1-3 s^{2}\right) a_{0}{ }^{2} t^{2}+\frac{6}{35} s^{3} a_{0}{ }^{3} t^{3}+o\left(t^{3}\right), \\
& f^{\prime}=-\frac{232}{525} a_{0}{ }^{3} t^{2}+o\left(t^{2}\right)
\end{aligned}
$$

Вихрь начинает двигаться вдоль оси $x$, вытягиваясь в направлении движения.

Ряды (3.3) (по крайней мере их первые члены) можно эффективно построить, когда $A_{0}(s)$ - многочлен. В этом случае $\boldsymbol{\Phi}_{0}=F_{0}+$ $+0.1 c_{0}\left[(v+1)^{2}-1\right]$ при $v<0$ п $\Phi_{0}=F_{0}-b_{0}(v+1)^{-3}$ при $v>0$, где $F_{0}-$ функция вида (3.8).
5. Эволюдия жидкого «пятна» в жидкой среде. Пусть $\varepsilon \neq 0$, начальные условия $\Phi_{0}=A_{0}=V_{0}=f(0)=0$. Это означает, что в покоящейся в момент $t=0$ жидкой среде покоится жидкий шар, отличающийся плотностью от окружающей среды. Нас интересует эволюция его формы. Подобная задача об эволюции жидкого «пятна», но в устойчиво стратифицированной среде, изучалась численно в работе [‘].

Уравнения (2.7) -(2.12) сохравяют силу, но в (2.7) и (2.14) следует положить $c_{0}=0$. Решение ищем в виде рядов (3.3), причем $\Phi_{k}=A_{h}=V_{h+1}=$ $=u_{h}=0$ при четных $k$. Для первых членов этих рядов получим

$$
\begin{aligned}
& v<0: \Phi_{1}=c_{1}, \Phi_{3}=c_{3} s(v+1) ; v>0: \Phi_{1}=c_{1}(v+1)^{-3}, \\
& \Phi_{3}=c_{3} s(v+1)^{-4} ; \\
& c_{1}=\varepsilon(3-\varepsilon)^{-1}, \quad c_{3}=3(1-\varepsilon) c_{1}^{2}(5-2 \varepsilon)^{-1}>0, u_{1}=-2 c_{1}, u_{3}=0, \\
& \quad V_{2}=0, \quad 4 V_{4}=c_{3}\left(1-3 s^{2}\right), \quad V_{6}=\gamma(\varepsilon) c_{3}^{3 / 2} s^{3}
\end{aligned}
$$

Формула для $\gamma(\varepsilon)$ громоздка, так что приведем только несколько значений: $\gamma(-10)=1.388, \gamma(-0.9)=1.213, \quad \gamma(-0.5)=1.175, \quad \gamma(0.1)=-1,088$, $\gamma(0.5)=-0.995, \gamma(0.9)=-0.934$.

Граница «пятна» и его скорость определяются формулами

$$
r=1+V_{t} t^{t}+V_{\theta} t^{6}+o\left(t^{6}\right), f^{\prime}=-2 c_{1} t+o\left(t^{4}\right)
$$

На фигуре $\varepsilon=-0.9, t=0.7 \boldsymbol{c}_{3}{ }^{-1 / 4}$ указана форма всплывающего «пятна» и мгновенная картина линий тока (качественно) ; уравнение этих линий $Q_{y} d x_{1}-Q_{x} d y_{1}=0$, составляюшие $Q_{x} Q_{y}$ скорости относительно осей $x_{1} y_{1}$ отыскиваются по функции Ф..
6. Цилиндрические вихри постоянной завихренности. В случае течения несжимаемой идеальной жидкости, параллельного плоскости $x y$, также существует функция тока $\psi$. Для плоского течения справедливы уравнения (1.1) и (1.2), если в них положить $k=0$. Смысл величин, входящих в эти уравнения, соответствует плоскому течению.

Из уравнений (1.1), (1.2) п (2.3) совместно с

$$
\begin{align*}
& q_{r}=-\frac{\partial \psi}{r \partial \theta}, \quad q_{\theta}=\frac{\partial \psi}{\partial r},  \tag{6.1}\\
& \zeta=E^{2} \psi=\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}
\end{align*}
$$

определяются неизвестные функции $\psi, P, \rho$. Считая жидкость однородной, положим $\rho=1$. Дальнейшая постановка задачи о цилиндрических вихрях аналогична приведенной выше постановке задачи о вихрях типа сфери-

ческого. Предполагается, что вихрь ограничен поверхностью $V=r-1$ -$-V^{*}(\theta, t)=0$. Вводятся криволинейные координаты $v, \theta$ по формулам

$$
x=f(t)+\left[v+1+V^{*}(\theta, t)\right] \cos \theta, \quad y=\varphi(t)+\left[v+1+V^{*}(\theta, t)\right] \sin \theta
$$

На фигуре $\varphi=0$; при $\varphi \neq 0$ ось $x_{1}$ параллельна $x ; r=v+1+V^{*}, \theta$ - полярные координаты в плоскости $x_{1} y_{1}$ с полюсом $o_{1} ; D_{*}=-\left(v+1+V^{*}\right)^{-1}$.

Уравнение (1.1) удовлетворяется в области $v \neq 0$, если положить $\zeta=$ $=-A(\theta, t)\left(1+V^{*}\right)^{-1} \delta(v)+c_{0} e(v)$.

Соотношением $\psi=r \Phi$ введем функцию $\Phi$ вместо $\psi$. Из (6.1) для $\Phi_{*}(v, \theta, t)=\Phi(x, y, t)$ следует уравнение

$$
\begin{align*}
& L^{2} \Phi_{*}=-A(\theta, t) \delta(v)+c_{0}\left(v+1+V^{*}\right) e(v)  \tag{6.2}\\
& L^{2} \Phi_{*}=\left(v+1+V^{*}\right)^{2} \frac{\partial^{2} \Phi_{*}}{\partial v^{2}}+3\left(v+1+V^{*}\right) \frac{\partial \Phi_{*}}{\partial v}+\Phi_{*}+ \\
& +\frac{\partial}{\partial \theta}\left(\frac{\partial \Phi_{*}}{\partial \theta}-\frac{\partial V^{*}}{\partial \theta} \frac{\partial \Phi_{*}}{\partial v}\right)-\frac{\partial V^{*}}{\partial \theta} \frac{\partial}{\partial v}\left(\frac{\partial \Phi_{*}}{\partial \theta}-\frac{\partial V^{*}}{\partial \theta} \frac{\partial \Phi_{*}}{\partial v}\right)
\end{align*}
$$

Уравнение (1.2) принимает вид

$$
\begin{equation*}
\frac{\partial A}{\partial t}+\frac{1}{2} \frac{\partial}{\partial \theta}\left[A\left(\frac{\partial \Phi_{*}}{\partial v_{+}}+\frac{\partial \Phi_{*}}{\partial v_{-}}+2 \stackrel{\Phi_{*}^{+}+f^{\prime} \sin \theta-\varphi^{\prime} \cos \theta}{V^{*}+1}\right)\right]=0 \tag{6.3}
\end{equation*}
$$

Функция $V^{*}(\theta, t)$ удовлетворяет уравнению

$$
\begin{equation*}
\frac{\partial V^{*}}{\partial t}+\frac{1}{V^{*}+1} \frac{\partial}{\partial \theta}\left[\left(V^{*}+1\right)\left(\Phi_{*}^{+}+f^{\prime} \sin \theta-\varphi^{\prime} \cos \theta\right)\right]=0 \tag{6.4}
\end{equation*}
$$

На функции $f(t)$ и $\varphi(t)$ накладываются условия

$$
\begin{equation*}
\theta=0, \quad \theta=\pi / 2, t \geqslant 0, \quad \partial V^{*} / \partial \theta=0 \tag{6.5}
\end{equation*}
$$

Уравнения' (6.2) - (6.5) аналогичны (2.7), (2.8), (2.11), (2.12). Граничные условия имеют вид (2.15), а начальные

$$
\begin{equation*}
t=0, \quad \Phi_{*}=\Phi_{0}(v, \theta), \quad A=A_{0}(\theta), \quad V^{*}=0, \quad f=\varphi=0 \tag{6.6}
\end{equation*}
$$

Вследствие (6.2) должно выполняться

$$
\begin{align*}
& L\left(\Phi_{0}\right)=-A_{0}(\theta) \delta(v)+c_{0}(1+v) e(v)  \tag{6.7}\\
& L(F)=(v+1)^{2} \frac{\partial^{2} F}{\partial v^{2}}+3(v+1) \frac{\partial F}{\partial v}+F+\frac{\partial^{2} F}{\partial \theta^{2}}
\end{align*}
$$

При построении решения задачи (6.2)-(6.6) используются аналогично (3.8) периодические по $\theta$ (с периодом $2 \pi$ ) с разделяющимися переменными решения уравнения $L(F)=0$. Нетрудно проверить, что $\Phi_{0}=F_{0}+0.25 c_{0}(v+1) \quad$ при $v<0$ и $\Phi_{0}=F_{0}+0.25 c_{0}(v+1)^{-1}$ при $v>0$, где $L\left(F_{0}\right)=0$ в областях $v \neq 0$.

При $A_{0}(\theta)=a_{0}+a_{1} \cos \theta$ получим

$$
\begin{array}{ll}
v<0: & \Phi_{0}=b_{0} \cos \theta+0.25 c_{0}(v+1) \\
v>0: & \Phi_{0}=b_{0} \cos \theta(v+1)^{-2}+0.25 c_{0}(v+1)^{-1} ; \quad c_{0}=2 a_{0}, \quad 2 b_{0}=a_{1}
\end{array}
$$

Начальными условиями определяется поле скоростей (относительно осей $x_{1}, y_{1}$ ) с составляющими $Q_{r}=0, Q_{\theta}=a_{0} r$ внутри вихря и $Q_{x}=$ $=0.5 a_{1} r^{-2} \sin 2 \theta, Q_{\nu}=-0.5 a_{1}\left(1+r^{-2} \cos 2 \theta\right)$ вне вихря. Начальная скорость вихря относительно покоящихся осей равна $0.5 a_{1}$ и направлена параллельно оси $y$. Форма вихря и скорость связанных с ним осей определя-

ются формулами

$$
\begin{aligned}
& r=1+0.5 a_{1}{ }^{2} t^{2} \cos 2 \theta+o\left(t^{2}\right), \quad f^{\prime}(t)=2 a_{0} a_{1}{ }^{2} t^{2}+o\left(t^{2}\right), \\
& \varphi^{\prime}(t)=\frac{1}{2} a_{1}\left[1+\frac{1}{8} a_{1}\left(9 a_{1}-32 a_{0}\right) t^{2}+o\left(t^{2}\right)\right]
\end{aligned}
$$

Вихрь ускоряется, если $9 a_{1}{ }^{2}-32 a_{0} a_{1}>0$; его скорость меняется по величине и направлению.

Поступила 5 VII 1978

## ЛИТЕРАТУРА

1. Милн-Томсон Л. И. Теоретическая гидродинамика. М., «Мир», 1964.
2. Simons G. A., Larson R. S. Formation of vortex rings in a stratified atmosphere. Phys. Fluids, 1974, vol. 17, No. 1.
3. Новиков Е. А. Динамика и статистика системы вихрей. ЖЭТФ, 1975, т. 68, в. 5.
4. Кузнечов Б. Г., Черньи Г. Г. Численное исследование поведения однородного «пятна» в идеальной стратифицированной по плотности жидкости. ПМТФ, 1973, № 3.
