О НЕУСТОЙЧИВОСТИ РАВНОВЕСИЯ СИСТЕМЫ ГОРИЗОНТАЛЬНЫХ СЛОЕВ НЕСМЕШИВАЮЩИХСЯ ЖИДКОСТЕИ ПРИ НАГРЕВЕ СВЕРХУ

Г. З. ГЕРШУНИ, Е. М. ЖУХОВИЦКИЙ

(Пермь)

Abstract

Конвективная устойчивость равновесия в системе двух жидкостей с горизонтальной границей раздела при подогреве снизу изучалась теоретически и экспериментально в ряде работ [${ }^{1-6}$]. Из полученных результатов следует, что неустоймивость в такого рода системах обусловлена обычным релеевским (стратификационным) механизмом, который сильно осложняется наличием теплового и гидродинамического взаимодействия жидкостей на границе раздела (имеются в виду слоистые системы несмешивающихся жидкостей в условиях, когда термокапиллярные эффекты несущественны). В 1964 г. появилась работа [${ }^{7}$], в которой рассматривалась устойчивость в системе двух полубесконечных жидких массивов при нагреве сверху. Хотя границы устойчивости в этой работе не были определены, анализ дисперсионного соотношения для малых возмущений показал, что при сияьном различии параметров жидкостей в такой ситуации возможна неустойчивость. Этот кажущийся парадоксальным результат, насколько известно авторам, не получил подтверждения в какихлибо последующих теоретических или экспериментальных работах. В данной статье рассматривается задача об устойчивости равновесия в нагреваемой сверху системе, состоящей из двух конечной толщины слоев разных жидкостей. Обсуждается физический механизм неустойчивости, который по своей природе существенно отличается от релеевского; найдены области изменения параметров системы, в которых возможев әффект, и количественно определены границы устойчивости равновесия.

1. Постановка задачи. Рассмотрим систему, состоящую из двух горизонтальных слоев разных по своим свойствам жидкостей. Слои имеют одинаковую толщину $h / 2$. Нижней ($z=0$) и верхней ($z=h$) границами системы служат твердые изотермические пластины, поддерживаемые при постоянных разных температурах. Граница раздела слоев $z=h / 2$ предполагается плоской недеформируемой. Релей-тейлоровский механизм неустойчивости не рассматривается; капиллярные и термокапиллярные әффекты на границе раздела не учитываются. В такой системе возможно механическое равновесие, при котором градиенты температуры в каждом из слоев вертикальны и постоянны. Условие непрерывности тепловога потока на границе раздела приводит к связи

$$
\begin{equation*}
x_{1} A_{1}=x_{2} A_{2} \tag{1.1}
\end{equation*}
$$

Здесь A_{1} и A_{2} - градиенты темшературы, а x_{1} и x_{2} - коэффициенты теплопроводности соответственно в нижнем и верхнем слоях. Далее будет рассматриваться случай нагрева сверху; поэтому A_{1} и A_{2} - положительны.

Сформулируем тешерь краевую задачу для малых возмущений равновесия. Полагая эти возмущения зависящими от времени по закону $\exp (-\lambda t)$ п рассматривая монотонные возмущения, для которых λ вещественно, получим амплитудные уравнения для "нейтральных» возмущений ($\lambda=0$)

$$
\begin{align*}
& -\frac{1}{\rho_{i}} \nabla p_{i}+v_{i} \Delta \mathbf{v}_{i}+g \beta_{i} T_{i} \gamma=0 \tag{1.2}\\
& \chi_{i} \Delta T_{i}=A_{i}\left(\mathbf{v}_{i} \gamma\right), \quad \operatorname{div} \mathbf{v}_{i}=0 \quad(i=1,2) \tag{1.3}
\end{align*}
$$

Здесь γ - единичный вектор, направленный вертикально вверх; остальные обозначения - обычные. Индексами 1 и 2 будем далее отмечать параметры и характеристики возмущений, относящиеся соответственно к нижней и верхней жидкостям.

На твердых изотермических внешних границах системы имеем условия
(1.4) $\quad z=0: \quad \mathbf{v}_{1}=0, \quad T_{1}=0 ; \quad z=h: \quad \mathbf{v}_{2}=0, \quad T_{2}=0$

На границе раздела жидкостей должны выполняться следующие условия: равенство нулю вертикальных компонент скорости, непрерывность касательных компонент скорости и касательных вязких напряжений, непрерывность температуры и теплового потока. Таким образом, имеем

$$
\begin{align*}
& z=h / 2: \quad v_{1 z}=v_{2 z}=0 ; \quad v_{1 x}=v_{2 x}, \quad v_{1 y}=v_{2 y} \tag{1.5}\\
& \eta_{1} \frac{\partial v_{1 x}}{\partial z}=\eta_{2} \frac{\partial v_{2 x}}{\partial z}, \quad \eta_{1} \frac{\partial v_{1 y}}{\partial z}=\eta_{2} \frac{\partial v_{2 y}}{\partial z} \\
& T_{1}=T_{2}, \quad x_{1} \frac{\partial T_{1}}{\partial z}=\varkappa_{2} \frac{\partial T_{2}}{\partial z}
\end{align*}
$$

(оси x и y расположены в плоскости нижней границы системы).
Введем безразмерные переменные, основанные на следующих единицах: расстояния - h, скорости χ_{1} / h, температуры - $A_{1} h$. Исключим из системы (1.2), (1.3) давление и горизонтальные компоненты скорости и будем рассматривать возмущения, зависящие от горизонтальных координат по закону $\exp \left[i\left(k_{x} x+k_{y} y\right)\right]$. Для безразмерных амплитуд вертикальной: компоненты скорости w_{i} и температуры θ_{i} получим уравнения

$$
\begin{align*}
& \Delta^{2} w_{i}-a_{i} k^{2} R \theta_{i}=0, \quad \Delta \theta_{i}-b_{i} w_{i}=0 \quad(i=1,2) \tag{1.6}\\
& \Delta=d^{2} / d z^{2}-k^{2}, \quad k^{2}=k_{x}{ }^{2}+k_{y}{ }^{2}, \quad a_{1}=1, \quad a_{2}=\varepsilon \\
& b_{1}=1, \quad b_{2}=x \chi
\end{align*}
$$

Граничные условия для w_{i} и θ_{i} зашишутся в виде

$$
\begin{array}{ll}
z=0: & w_{1}=0, \quad w_{1}^{\prime}=0, \quad \theta_{1}=0 \tag{1.7}\\
z=1: & w_{2}=0, \quad w_{2}^{\prime}=0, \quad \theta_{2}=0 \\
z=1 / 2: & w_{1}=w_{2}=0, \quad w_{1}^{\prime}=w_{2}^{\prime}, \quad \eta w_{1}^{\prime \prime}=w_{2}^{\prime \prime} \\
\theta_{1}=\theta_{2}, & x \theta_{1}^{\prime}=\theta_{2}^{\prime}
\end{array}
$$

(штрихом обозначены производные по z).
Краевая задача (1.6), (1.7) содержит шесть безразмерных комплексов: волновое число k; число Рэлея R, определенное по полной толщине h, градиенту температуры и параметрам нижней жидкости; а также отношения параметров обеих жидкостей

$$
\begin{equation*}
R_{1}=\frac{g \beta_{1} A_{1} h^{4}}{v_{1} \chi_{1}}, \quad \varepsilon=\frac{v_{1} \beta_{2}}{v_{2} \beta_{1}}, \quad x=\frac{\chi_{1}}{x_{2}}, \quad \chi=\frac{\chi_{1}}{\chi_{2}}, \quad \eta=\frac{\eta_{1}}{\eta_{2}} \tag{1.8}
\end{equation*}
$$

Условие существования нетривиального решения задачи определяет критическое число Рэлея $R(k ; \varepsilon, \chi, x, \eta)$, при котором теряется устойчивость равновесия; при нагреве сверху, по определению, $R>0$. Наряду с R в некоторых случаях полезно вводить число Рэлея $R_{2}=g \beta_{2} A_{2} h^{4} / v_{2} \chi_{2}$, определенное по параметрам верхнего слоя. Из (1.1) вытекает связь $R_{2}=$ $=\varepsilon x \chi R_{1}$.

Следует отметить свойство симметрии краевой задачи, состоящее в том, что условия неустойчивости не меняются, если верхний и нижний слои поменять местами. При такой замене, очевидно, происходят преобразования параметров $\varepsilon \rightarrow \varepsilon^{-1}$ и т. д., а критическое условие наступления неустойчивости должно быть сформулировано через число Релея, определенное по параметрам верхней жидкости. С учетом связи между R_{1} пи R_{2} это условие симметрии можно записать в виде

$$
\begin{equation*}
R_{1}\left(\varepsilon^{-1}, \chi^{-1}, \chi^{-1}, \eta^{-1}\right)=R_{2}(\varepsilon, \chi, \varkappa, \eta)=\varepsilon \chi \chi R_{1}(\varepsilon, \chi, \chi, \eta) \tag{1.9}
\end{equation*}
$$

В полной постановке краевая задача (1.6), (1.7) решалась численно. В каждой из двух областей система (1.6) сводилась к стандартной систе-

$t,{ }^{\circ} \mathrm{C}$	ε	x	χ	η	R_{m}	k_{m}	$R_{\text {m* }}$	$k_{m *}$
10	0.0448	14.6	32.2	1.24	$13.45 \cdot 10^{3}$	1.95	-1219	6.49
20	0.13	14.4	31.8	1.55	$298 \cdot 10^{3}$	0.72	-399	6.05

ме шести уравнений первого порядка; система ивтегрировалась методом Рунпе - Кутта. В нижней и верхней областях строилось по три линейнонезависимых решения, удовлетворявшшх условиям на внешних гранидах соответственно $z=0$ п $z=1$. Условия сшивания на границе слоев приводили к характөристическому соотношению вида $D=0$, где D - определитель шестого порядка. Собственные значения - критические числа Релея - находились методом хорд.
2. Пример расчета. Физический механизм неустойчивости. Рассмотрим сначала пример расчета, относящийся к двухслойной системе ртуть - вода. Такая система может быть сравнительно легко реализована в лабораторных условиях. С другой стороны, рассмотрение этого примера окажется полезным при обсуждении физической природы неустойчивости. Характеризующие систему безразмерные параметры приведены в таблице для .двух значений температуры. Расчеты показывают, что в обоих случаях равновесие двухслойной системы при нагреве сверху оказывается неустойчивым при достижении числом Релея определенного критического значения. На фхг. 1 приведены нейтральные кривые; цифры 1 и 2 относятся соответственно к температурам 10 и $20^{\circ} \mathrm{C}$. Здесь же схематически изображен профиль амплитуды вертикальной компоненты скорости $w(z)$. В таб.лице приведены значения критических параметров - минимальные (по k) числа Релея R_{m} и соответствующие минимуму нейтральной кривой волновые числа k_{m}. Для сравнения приводятся также параметры $R_{m *}$ и $k_{m *}$ -обычной релеевской неустойчивости, возникающей при подогреве снизу.

Как видно, в рассматриваемом примере для возбуждения неустойчивости при нагреве сверху требуются более высокие перепады температур, чем при подогреве снизу. Кроме того, новый тип неустойчивости обусловлен развитием возмущений с большей, чем в случае подогрева снизу, длиной волны. Профиль $w(z)$ свидетельствует о том, что более интенсивная конвекция развивается в нижнем слое жидкости, где образуется один .длинноволновый вихрь. Течение в верхнем слое имеет значительно меньшую интенсивность и состоит из двух индуцированных вихрей разных .знаков.

Для понимания обсуждаемого ниже механизма неустойчивости важно нодчеркнуть, что рассматриваемая пара жидкостей характеризуется значительным отношением коэффидиентов температуропроводности и малым значением параметра ε. Видно, что при понижении температуры условия ноявления неустойчивости становятся более благоприятными; это обстоятельство связано с уменьшением параметра ε, т. е. в сущности отношения

коэффициентов теплового расширения β_{2} / β_{1} за счет приближения к точке инверсии теплового расширения воды $4^{\circ} \mathrm{C}$. При повышении температуры, напротив, критическое число Релея R_{m} резко возрастает и, как показываюот расчеты, при температурах, на несколько градусов превосходящих $20^{\circ} \mathrm{C}, R_{m} \rightarrow \infty$, т. е. обсуждаемый тип неустойчивости исчезает.

Перейдем теперь к описанию мехавизма неустойчивости. Рассмотрим систему, у которой нижняя жидкость обладает значительно более высокой температуропроводностью ($\chi \gg 1$), а верхняя жидкость имеет относительно

малый коәффициент теплового расширения ($\beta_{2} \rightarrow 0$, т. е. $\varepsilon \rightarrow 0$). Пусть в результате случайного возмущения әлемент верхней жидкости сместился вниз в направлении к границе раздела (фиг. 2). Поскольку система нагревается сверху, выделенный элемент в своем новом положении имеет более. высокую температуру, чем окружающая жидкость, причем его остывание происходит медленно, так как температуропроводность верхней жидкости относительно мала. Из-за малости теплового расширения верхнего слоя әлемент является практически нейтрально-плавучим - возвращающая подъемная сила мала - и смещению элемента препятствует лишь вязкость.

Смещение элемента вызывает искажение температурного поля; качественно это искажение иллюстрирует отмеченная на фиг. 2 изотерма в ее новом положении (штриховая линия). Непрерывность температурного поля на границе раздела приводит к появлению вблизи границы раздела в нижней жидкости горизонтальных градиентов температуры, которые направлены к точке, расположенной под элементом. Неоднородность температуры по горизонтали служит причиной образования адвективных потоков, скорость которых относительно велика из-за большого β_{1} / v_{1}; структура этих потоков указана на фигуре. Непрерывность скорости и касательного напряжения на границе раздела приводит к тому, что в верхней жидкости индуцируются течения, которые, как видно, усиливают начальное возмущение. Таким образом, тепловое и динамическое взаимодействия соприкасающихся жидкостей могут привести (при достаточном вертикальном градиенте төмпературы) к потере устойчивости равновесия и установлению конечно-амплитудного конвективного течения.
3. Предельные случаи. Обсуждение физического механизма показывает, что условия появления неустойчивости рассматриваемого типа благоприятны при малости параметров ε и χ^{-1}. Целесообразно поэтому специально рассмотреть предельный случай $\beta_{2}=0, \chi_{1} \rightarrow \infty$ (верхняя жидкость не имеет теплового расширения, а нижняя обладает очень высокой температуропроводностью). В этом пределе амплитудная краевая задача (1.6), (1.7) может быть упрощена. Выбирая теперь в качестве единиц расстояния, скорости и температуры соответственно $h, \chi_{2} / h$ и $A_{2} h$, запишем ампли-

тудные уравнения для названного предельного случая в виде

$$
\begin{align*}
& \Delta^{2} w_{1}-k^{2} R_{l} \theta_{1}=0, \quad \Delta \theta_{1}=0 \tag{3.1}\\
& \Delta^{2} w_{2}=0, \quad \Delta \theta_{2}-w_{2}=0
\end{align*}
$$

Граничные условия сохраняют прежний вид (1.7). Собственным числом задачи является число Релея $R_{l}=g \beta_{1} A_{2} h^{4} / v_{1} \chi_{2}$, связанное с введенным ранее R соотношением $\varkappa \chi R=R_{l}$.

Упрощенная амплитудная задача допускает точное решение, выражающееся через элементарные функции. Опуская для краткости громоздкие формулы для критических амплитуд $w_{1,2}$ и $\theta_{1,2}$, приведем критическое значение числа Релея

$$
\begin{align*}
& R_{l}=Q(k)(1+x)\left(1+\frac{1}{\eta}\right) \tag{3.2}\\
& Q(k)=256 k^{4} c\left[\left(4 k+k^{3}\right)+2\left(4+k^{2}\right) c-2\left(2 k+k^{3}\right) c^{2}-\right. \\
& \left.-2 k^{2} c^{3}+k^{3} c^{4}\right]\left(8+k^{3} c-k^{3} c^{3}\right)^{-2} ; \quad c=\operatorname{cth} k / 2
\end{align*}
$$

Функция $Q(k)$ имеет единственный минимум при $k_{m}=3.15$; минимальное значение $Q_{m}=35.290 \cdot 10^{3}$. Возвращаясь к определенному ранее по параметрам нижней жидкости числу Релея R, получим границу устойчивости

$$
\begin{equation*}
R_{m}=35.290 \cdot 10^{3}\left(1+\frac{1}{\chi}\right)\left(1+\frac{1}{\eta}\right) \chi^{-1} \tag{3.3}
\end{equation*}
$$

Эта формула дает главный член разложения критического числа Pe лея, определяемого полной краевой задачей (1.6), (1.7), по степеням малых параметров ε и χ^{-1} при произвольных χ п η.

Следует подчеркнуть, что найденный уровень неустойчивости равновесия при нагреве сверху является единственным. В этом, в частности, проявляется качественное отличие обсуждаемого типа неустойчивости от релеевского, где существуют (при конечных значениях параметров системы) верхние уровни, отличающиеся от основного более мелкой структурой возмущений по вертикали. Заметим также, что в рассмотренном предельном случае ($\varepsilon=0, \chi \rightarrow \infty$) краевая амплитудная задача (3.1), (1.7) не имеет решений с $R<0$, т. е. обычная` релеевская неустойчивость при подогреве снизу вообще отсутствует. Это обстоятельство физически понятно: при отсутствии теплового расширения верхнего слоя и бесконечной темшературопроводности нижнего слоя конвективные возмущения равновесия в нодогреваемой снизу системе затухают.

Формула (3.3) определяет уровень неустойчивости при произвольных x п η и малых ε п χ^{-1}. Физически очевидно, что при тех же значениях χ и η возможна неустойчивость рассматриваемого типа и в противоположном предельном случае, когда параметры ε и χ^{-1} велики (если коэффициент теплового расширения нижней жидкости мал, а температуропроводность верхней жидкости велика, то рассуждения, аналогичные приведенным в п. 2 , также приводят к выводу о возможности неустойчивости). Критическое число Релея для этого противоположного случая больших ε и χ^{-1} можно найти, зная R_{m}, определяемое формулой (3.3), для значений $1 / \chi$ и $1 / \eta$. Пользуясь отмеченным в п. 1 свойством симметрии краевой задачи и (1.9), можно представить главный член разложения критическото числа Релея в области больших ε и χ^{-1} в виде

$$
R_{m}=35.290 \cdot 10^{3}\left(1+\frac{1}{x}\right)(1+\eta) \varepsilon^{-1}
$$

4. Численные результаты. При произвольных значениях всех параметров системы задача (1.6), (1.7) решалась численно (см. п. 1).

Для определенности остановимся сначала на области параметров ε и χ^{-1}, в которой хотя бы один из них меньше единицы. В предельном случае малых ε и χ^{-1}, как уже указывалось выше, критическое число Релея может быть найдено по формуле (3.3). Если при фиксированных параметрах χ и η увеличивать ε и χ^{-1}, то формула (3.3) перестает быть справедливой; согласно численным результатам, критическое число Релея R_{m} монотонно возрастает и стремится к бесконечности при достижении некоторых предельных значений $\varepsilon *$ или $\chi *^{-1}$. При $\varepsilon>\varepsilon *$ или $\chi^{-1}>\chi_{*}^{-1}$ неустойчивость отсутствует. Для примера на фиг. 3 приведено семейство нейтральных кривых при $x=\chi=10, \eta=1$ для значений ε, равных $0,0.01,0.02$ (кривые $1-3$ соответственно). Неустойчивость существует в области $0 \leqslant \varepsilon<\varepsilon_{*}$, где $\varepsilon_{*}=0.0270$. При

$\varepsilon \rightarrow \varepsilon_{*}$ критическое число $R_{m} \rightarrow \infty$, а длина волны наиболее опасных возмущений увеличивается ($k_{m} \rightarrow 0$). При достаточном значении ε нейтральные кривые имеют форму мешка: при данном k область неустойчивости ограничена по R снизу и сверху; обе ветви нейтральной кривой имеют общей асимптотой ось R, и в области малых k критические числа R на обеих ветвях изменяются по закону $R \sim 1 / k^{2}$. Расчеты показывают, что при произвольных значениях параметров, как и в рассмотренных выше предельных случаях, имеется единственный уровень неустойчивости.

На фиг. 4 приведены зависимости R_{m} и k_{m} от ε для следующих комбинаций параметров $x, \eta, \chi ;\left(10^{4}, 10^{4}, 10\right) ;(1,1,1) ;(1,1,10)$ (кривые $1-3$ соответственно). Для других значений параметров ситуация в общем сохраняется: при стремлении $\varepsilon \rightarrow \varepsilon_{*}(\chi, \eta, \chi)$ критическое число $R_{m} \rightarrow \infty$ и $k_{m} \rightarrow 0$.

Расчеты $\varepsilon *$ позволяют выделить области значений параметров двухслойной системы, при которых возможна неустойчивость обсуждаемого типа. Некоторые результаты представлены на фиг. 5. Здесь на плоскости $\lg \varepsilon-\lg \chi^{-1}$ изображены предельные кривые областей неустойчивости при фиксированных значениях x и η (кривые 1-5 соответствуют следующим значениям параметров χ, η : $(0.1,0.1),(1,1), \quad\left(10^{4}, 10^{4}\right)$, $(10,1)(1,10))$. Область существования неустойчивости расположена со стороны малых значений ε и χ^{-1}. Эти кривые образуют семейство, зависящее от двух параметров $-x$ и η. Кривая 6 является предельной все кривые семейства располо-

Фиг. 5 жены по одну сторону от этой кривой; но другую сторону (эта область отмечена штриховкой) равновесие при нагреве сверху устойчиво при любых значениях x и η. Сама кри-

вая 6 соответствует значению $\eta \rightarrow \infty$ и некоторому конечному x, определенным образом изменяющемуся вдоль кривой. Каждая кривая семейства, изображенного на фиг. 5, ограничивает область неустойчивости, примыкающую к малым значениям ε и χ^{-1} (относительно малое тепловое расширение в верхнем слое и относительно высокая темшературопроводность нижнего слоя). В силу отмеченного выше свойства симметрии аналогичное семейство кривых имеется и в области больших ε и χ^{-1}. Это семейство также имеет предельную кривую, получающуюся из кривой 6 преобразованием инверсии относительно начала координат на плоскости $\lg \varepsilon-\lg \chi^{-1}$; все кривые этого семейства располагаются по отношению к этой кривой со стороны больших ε и χ^{-1}.

Между двумя предельными кривыми - 6 и получающейся из нее инверсией - находится область абсолютной устойчивости равновесия двухслойной системы при нагреве сверху. Таким образом, для возбуждения неустойчивости необходимо, чтобы по крайней мере один из двух ведущих параметров (ε или χ) был существенно отличен от единицы.

В заключение приведем оценку критической разности температур, необходимой для возбуждения неустойчивости равновесия в двухслойной системе, нагреваемой сверху. Из определения числа Релея (1.8) и связи равновесных градиентов температуры (1.1) следует, что критическая разность температур

$$
\Theta=\frac{(1+x) v_{1} \chi_{1} R_{m}}{2 g \beta_{1} h^{3}}
$$

Здесь R_{m} - минимальное критическое число Релея. Подставляя в эту формулу параметры системы ртуть-вода при $10^{\circ} \mathrm{C}$, получим $\Theta \approx 30 / h^{3}$. При толщинах каждого из слоев в 1 см ($h=2$ см) имеем $\Theta \approx 4^{\circ} \mathrm{C}$, и эта разность температур быстро уменьшается с увеличением h. Таким образом, неустойчивость может наблюдаться в лабораторных условиях.

Поступила 2 IV 1979

ЛИТЕРАТУРА

1. Гериуни Г. З., Жуховичкий Е. М. Конвективная неустойчивость равновесия двух несмешивающихся жидкостей в шаровой полости. Уч. зап. Перм. уп-та, 1968, № 184.
2. Поддубная Л. Г., Рудаков Ю. П., Шайдуров Г. Ф. Тепловая неустойчивость двухслойной жидкости в шаровой полости. Уч. зап. Перм. ун-та, 1968, № 184.
3. Шллиомис М. И., Якушин В. И. Конвективная неустойчивость равновесия двух несмешивающихся жидкостей, заполняющих шаровую полость в произвольном отношении. Уч. зап. Перм. ун-та, 1970, № 216.
4. Zeren R. W., Reynolds W. C. Thermal instabilities in two-fluid horizontal layers. J. Fluid Mech., 1972, vol. 53, No. 2.
5. Березовский Э. И., Перельман Т. Л., Ромашко Е. А. О конвективной устойчивости в системе двух неограниченных горизонтальных слоев несмешиваемых жидкостей. Инж.-физ. ж., 1974, т. 27, № 6.
6. Адилов Р. С., Путин Г. Ф., Пайдуров $Г$. Ф. Конвективная устойчивость двух несмепивающихся жидкостей в горизонтальной щели. Уч. зап. Перм. ун-та, 1976,
№ 362 .
7. Welander P. Convective instability in a two-layer fluid heated uniformly from above. Tellus, 1964, vol. 16, No. 3.
