О ВОЗНИКНОВЕНИИ КОНВЕКЦИИ В СМЕСЯХ С КОНЦЕНТРАЦИОННЫМИ ИСТОЧНИКАМИ ТЕПЛА

А. К. КОЛЕСНИКОВ, В. И. ЯКУШИН

(Пермь)
Определение условий возникновения конвекции в среде с внутренним тепловыделением представляет интерес как для оценки возможностей теплоотвода в различного рода реакторах и теплообменных устройствах [1, ${ }^{2}$], так и в связи с некоторыми геофизическими и астрофизическими проблемами [${ }^{3}$]. Конвекция, обусловленная внутренними источниками тепла, рассматривалась в ряде работ, обзор которых содержится в [4]. В большинстве из них тепловыделение в среде предполагается однородным, а сама среда - однокомпонентной. Однако во многих практически интересных процессах (например, отвод тепла от жидких радиоактивных отходов, протекание химических реакций, селективное светопоглощение [${ }^{5}$]) тепловыдедение, как правило, неоднородно и среда представляет собой многокомпонентную смесь. Интенсивность тепловыделения при этом можно считать пропорциональной концентрации «активной» компоненты (концентрационные источники тепла).

Очевидно, условия возникновения конвекции в этих случаях должны заметно отличаться от таковых для обычных жидкостей. Отличия могут быть вызваны, вопервых, характером распределения в среде температурных градиентов; во-вторых, возможностью термоконцентрационной неустойчивости и, в-третьих, диффузионным дерераспределением внутренних источников.

В работе [${ }^{6}$] исследовалась конвективная устойчивость горизонтального слоя бшнарной смеси, в котором в состоянии равновесия поддерживается постоянный вертикальный градиент концентрации активной компоненты, причем максимум концентрации располагается на нижней границе. В результате численного решения линейной задачи для амплитуд нормальных возмущений были построены кривые нейтральной устойчивости при различных значениях числа Льюиса и диффузионного числа Релея. Вычисления показали, что при направленном вниз градиенте тепловыделяющей компоненты неустойчивость носит монотонный характер.

В настоящей работе рассматривается устойчивость горизонтального слоя двухкомпонентной смеси с градиентом концентрации активной компоненты, направленным вверх. Как оказывается, картина неустойчивости существенно зависит от направления градиента. Так, в исследуемом случае неустойчивость может иметь и монотонный, и колебательный характер. Особенностью задачи является также существование двух независимых нейтральных кривых, связанных с тепловым и концентрационным механизмами неустойчивости. С помощью метода пошагового-интегрирования определены области возникновения монотонной и колебательной конвекции. Приведены графики амплитуд критических возмущений скорости, температуры и концевтрации.

Рассмотрим конвективную устойчивость несжимаемой бинарной смеси, одна из компонент которой обуславливает внутреннее тепловыделение с удельной мощностью Q, пропорциональной концентрации C активной компоненты: $Q=Q_{0} C$. Такая зависимость $Q(C)$ соответствует, например, экзотермической реакции первого порядка, когда скорость реакции слабо зависит от температуры. Изменение интенсивности тепловыделения в среде может происходить тогда гораздо медленнее, чем установление полей температуры и концентрации.

Пусть смесь заполняет бесконечный горизонтальный слой, ограниченный изотермическими плоскостями $z=0$ и $z=d$, поддерживаемыми при одинаковой температуре T°. В объеме слоя задается постоянный направленный вверх градиент концентрации тепловыделяющей компоненты A.

Выберем в качестве начала отсчета температуры величину T°, а концентрации - ее значение на нижней границе слоя. Тогда краевые условия для температуры, концентрации и скорости запишем в виде

$$
\begin{equation*}
z=0: \mathrm{v}=0, T=0, C=0 ; z=d: \mathrm{v}=0, T=0, C=A d \tag{1}
\end{equation*}
$$

В пренебрежении малыми эффектами термодиффузии и диффузионной теплопроводности стационарные распределения температуры и концентрации, соответствующие состоянию механического равновесия, имеют вид

$$
\begin{equation*}
C_{0}=A z, \quad T_{0}=\frac{Q_{0} A}{6 \chi \rho_{0} c_{p}} z\left(d^{2}-z^{2}\right) \tag{2}
\end{equation*}
$$

Здесь ρ_{0} - средняя плотность смеси, χ - коәффициент температуропроводности, c_{p} - удельная теплоемкость.

Исследуем устойчивость равновесных распределений (2) относительно малых нормальных возмущений скорости, температуры и концентрадии, пропорциональных $\exp \left[-\lambda t+i\left(k_{1} x+k_{2} y\right)\right]$, где $\lambda=\lambda_{r}+i \lambda_{i}-$ комплексный декремент возмущений.

Система линеаризованных уравнений для амплитуд возмущений находится из полных уравнений конвекции в приближении Буссинеска для бинарной смеси с тепловыделением обычным образом [7, ${ }^{6}$]. Выбирая в качестве единиц измерения расстояния d, времени d^{2} / v (v - кинематическая вязкость), скорости χ / d, температуры $Q_{0} A d^{3} / 6 \rho_{0} c_{p} \chi$, концентрации $A d$ и давления $\rho_{0} v \chi / d^{2}$, получим

$$
\begin{align*}
& -\lambda\left(w^{\prime \prime}-k^{2} w\right)=\left(w^{\mathrm{Iv}}-2 k^{2} w^{\prime \prime}+k^{4} w\right)-R k^{2} \theta-R_{d} k^{2} \eta \tag{3}\\
& -\lambda P \theta=\left(\theta^{\prime \prime}-k^{2} \theta\right)+6 \eta-w T_{0}^{\prime} \\
& -\lambda P_{d} \eta=\left(\eta^{\prime \prime}-k^{2} \eta\right)-\frac{P_{d}}{P} w C_{0}^{\prime} \quad\left(k^{2}=k_{1}{ }^{2}+k_{2}{ }^{2}\right) \\
& R=\frac{g \beta_{1} Q_{0} A d^{s}}{6 \rho_{0} c_{p} v \chi^{2}}, \quad R_{d}=\frac{g \beta_{2} A d^{4}}{v \chi}, \quad P=\frac{v}{\chi}, \quad P_{d}=\frac{v}{D} \\
& \beta_{1}=-\frac{1}{\rho_{0}}\left(\frac{\partial \rho}{\partial T}\right)_{c, p} ; \quad \beta_{2}=-\frac{1}{\rho_{0}}\left(\frac{\partial \rho}{\partial C}\right)_{T, p},
\end{align*}
$$

В системе (3) через $w(z), \theta(z)$ и $\eta(z)$ обозначены соответственно амплитуды возмущений вертикальной составляющей скорости, температуры и концентрации; $T_{n}(z)$ и $C_{0}(z)$ - теперь безразмерные равновесные профили. Уравнения содержат четыре параметра подобия: R и R_{d} - тепловое и диффузионное числа Релея; P и P_{d} - тепловое и диффузионное числа Прандтля (P_{d} называют также числом Шмидта). Коәффициент β_{1} определяет тепловое расширение смеси, а β_{2} характеризует зависимость плотности от концентрации. Если тепловыделение обусловлено легкой компонентой то $\beta_{2}>0$; для тяжелой активной составляющей $\beta_{2}<0$.

Ввиду того что на границах слоя поддерживаются равновесные значения скорости, температуры и концентрации, для w, θ и η выполняются условия

$$
\begin{equation*}
z=0^{\prime} ; 1: w=w^{\prime}=\theta=\eta=0 . \tag{4}
\end{equation*}
$$

Определение порога возникновения конвекции в смеси с концентрационными источниками тепла сводится к нахождению декрементов $\lambda(P$, $\left.P_{d}, R, R_{d}, k\right)$, являющихся собственными значениями краевой задачи (3), (4). Границе устойчивости соответствуют $\lambda_{r}=0$ (нейтральные возмущения), при $\lambda_{r}<0$ возмущения нарастают, при $\lambda_{r}>0$ - затухают. Если для $\lambda_{r}=0$ значения $\lambda_{i} \neq 0$, то критические возмущения имеют колебательный характер, частота колебаний определяется величиной λ_{i}.

Решение задачи (3), (4) осуществлядось численно методом Рунге - Кутта - Мерсона с пошаговым анализом точности [${ }^{8}$]. Этим методом строились четыре линейнонезависимых частных решения, удовлетворяющих граничным условиям в начальной точке интегрирования. Характеристическое соотношение для нахождения комплексного декремента λ получается из требования существования нетривиального решения задачи и выполнения граничных условий в конечной точке интервала пнтегрирования.

В качестве контрольного примера была определена критическая величина $R_{d} *$ для концентрадионного аналога иввестной задачи Релея, которая вытекает из (3), (4) при $R=0$. Полученное для $P_{d} / P=1$ минимальное критическое значение $R_{d *}=$ $=-1707.762$ полностью совпадает с приведенным в [$\left.{ }^{7}\right]$.

Перейдем к обсуждению результатов. Как следует из постановки задачи, в слое с концентрационными источниками тепла существуют два механизма стратификации плотности: тепловой и концентрационный. Из структуры равновесного профиля температуры (2) видно, что область нотенциально неустойчивой стратификации, обусловленная температурным распределением, локализована в верхней части слоя. В зависимости от относительной плотности тепловыделяющей компоненты заданный в смеси постоянный градиент концентрации может оказывать как стабилизирующее, так и дестабилизирующее влияние на конвективную устойчивость.

На фиг. 1 приведено семейство нейтральных кривых $R(k)$, построенных при $P=1$ и $P_{d}=1.2$ для $R_{d}=0,5000,-3000$, $-3800,-3900,-5000$ (па фииг. 1 соответственно кривые 1-6). Сплошными линиями изображены границы монотонной неустойчивости, штриховыми - колебательной, штрихпунктирные дискриминантные кривые разделяют зоны нарастающих колебательных и монотонных возмущений. Из уравнений (3) следует, что траница монотонной неустойчивости зависит лишь
 от отношения чисел Прандтля P_{d} / P, называемого числом Льюиса $L=\chi / D$. Значения чисел Рәлея, при которых в области малых волновых чисел появляется колебательная неустойчивость, для всех R_{d} при указанных P и P_{d} превышают величины R, определяющие возникновение неустойчивости монотонното типа.

Рассмотрим вначале зависимость $R(k)$ при $R_{d} \geqslant 0$ (кривые 1,2). Области неустойчивости находятся над нейтральными кривыми. При $R_{d}=0$ ($\beta_{2}=0$, т. е. одинаковые плотности компонент смеси) стратификация среды связана только с градиентами температуры и зависимость $R(k)$ характеризует начало конвекции в случае теплового механизма неустойчивости, осложненного диффузионным перераспределением внутренних источников тепла. Заметим, что чисто тепловая неустойчивость реализуется при $R_{d}=0$ и $P_{d}=0$. Рост положительных R_{d} соответствует увеличению концентрации легкой компоненты в верхней части слоя, что оказывает стабилизирующеө воздействие на устойчивость равновесия системы.

С уменьшением R_{d} в области $R_{d}<0$ (кривые 3-6) неустойчивость в слое наступает при все более низких значениях числа Рәлея. Отрицательные величины R_{d} означают, что тепловыделение обусловлено более тяжелой компонентой. При $R_{d}=R_{d 1}=-1708 / L$ конвекция возникает и в отсутствие

тепловых источников, т. е. при $R=0$. Возмущения, приводящие к срыву равновесия, имеют в этом случае концентрационную природу и развиваются во всем объеме слоя. Соответствующее критическое волновое число возмущений $k_{*}=3.12$ совпадает с величиной $k *$ в задаче Рэлея.

При $R_{d}<R_{d 1}$ неустойчивость концентрационного типа возможна п для $R \neq 0$, причем по отношению к целой группе возмущений с волновыми числами из интервала $\Delta k(R)$. Таким образом, для значений $R_{d}<R_{d 1}$ устойчивость системы характеризуется уже двумя нейтральными кривыми, каж-

Фиг. 2

Фиг. 3

дая из которых связана либо с тепловым, либо с концентрационным механизмом неустойчивости.

На фиг. 1 кривые $3, a$ п $4, a$, построенные для $R_{d}=-3000$ и -3800 , описывают неустойчивость по отношению к тепловой моде; нейтральные кривые 3 , 6 и 4 , б, вычисленные для этих же значений R_{d}, ограничивают сверxу зону нарастающих концентрационных возмущений. Как следует из графиков, с ростом интенсивности тепловыделения, т. е. с увеличением числа Рэлея, устойчивость равновесия по отношению к концентрадионной моде повышается.

Из фигуры также видно, что области неустойчивости разделены интервалом $\Delta R(k)$, в котором возмущения обоих типов затухают. Минимальная величина ΔR убывает с уменьшением R_{d} от величины $R_{1} \approx 26000$, соответствующей значению $R_{d 1}$, до нуля при $R_{d}=R_{d 2} \approx-3850$. Для $R_{d}<R_{d 2}$ (зависимости 5,6) равновесие становится неустойчивым при любых числах Рэлея («абсолютная» неустойчивость). Смыкание нейтральных кривых для числа Льюиса $L=1.2$ происходит при значениях числа Рэлея $R=R_{2} \approx 12700$. Очевидно, при $R \approx R_{2}$ п $R_{d} \approx R_{d 2}$ указать преобладающий механизм неустой-чивости невозможно.

Расчеты, проведенные для различных чисел Прандтля и Шмидта, показали, что в зависимости от их величины картина неустойчивости изменяется. На фиг. 2 представлены нейтральные кривые для $P=1, P_{d}=2$ и $R_{d}=0,5000,-3000,-3500$ (кривые $1-4$ соответственно). Из графиков $R(k)$ следует существование в этом случае интервала значений \boldsymbol{R}_{d}, в котором наиболее опасными являются колебательные возмущения, обусловленные тепловым механизмом неустойчивости. Нарастающие возмущения

концентрадионной природы по-прежнему имеют монотонный характер. Расположение зон неустойчивости качественно аналогично описанному для $P=1$ и $P_{d}=1.2$ на фиг. 1. Смыкание и перестройка обоих типов нейтральных кривых происходит при $R_{2} \approx 13600$ и $R_{d 2} \approx-3050$.

Анализ условий возникновения конвекции в бинарных смесях удобно проводить на диаграммах устойчивости, показывающих зависимость критической величины одного из чисел Рэлея от остальных параметров задачи. Такая диаграмма устойчивости в координатах (R_{*}, L), где R_{*} - экстремумы функций $R(k)$, изображена на фиг. 3. Представленные результаты получены при $P=1$ и значениях числа Јьюиса в интервале $0<L<4$, являющихся типичными для газовых смесей. Кривые 1-5 на фиг. 3 соответствуют значениям $R_{d}=0,5000,-2500,-3000,-5000$. Сплошные линии $R_{*}(L)$ отвечают границам монотонной неустойчивости, а штриховые колебательной.

Рассмотрим сначала на диаграмме фиг. 3 области монотонной неустойчивости. При $R_{d} \geqslant 0$ устойчивому равновесию соответствуют зоны ниже кривых $R_{*}(L)$, для $R_{d}<0$ области устойчивости заключены между осями координат и графиками $R_{*}(L)$. В отсутствие диффузионного перераспределения внутренних источников тепла ($L=0$) все зависимости начинаются в точке $R_{*}=2.03 \cdot 10^{4}$. Это значение числа Рэлея определяет кризис равновесия в слое с тепловыделением, плотность которого равномерно возрастает с вертикальной координатой. Из графиков следует, что диффузия тепловых источников ($L \neq 0$) оказывает существенное влияние на условия возникновения конвекции. Так, например, даже при $R_{d}=0$ критические числа Рэлея для $L=2$ и 0 отличаются в 2 раза. Для $R_{d} \geqslant 0$ зависимости $R_{*}(L)$ близки к линейным. При $R_{d}<0$ функции $R_{*}(L)$ становятся неоднозначными, что означает появление в случае тяжелой активной составляющей двух нейтральных кривых (см. фиг. 1, 2). Верхняя ветвь $R_{*}(L)$ связана с тепловым механизмом неустойчивости, нижняя - с концентрационным. Наличие замкнутой области устойчивости на плоскости (R_{*}, L) означает существование двух критических чисел Рэлея. Интересно отметить, что в некоторых случаях при $R_{d}<0$ для стабилизации равновесия оказывается необходимым увеличивать мощность внутреннего тепловыделения.

Пересечение характеристик $R_{*}(L)$ с осью абсцисс возможно только при $R_{d}<0$ и происходит в точках, определяемых соотношением $R_{d} L=-1708$.

Отрицательные величины теплового числа Рэлея в принятой постановже задачи отвечают поглощению тепла активной составляющей смеси (эндотермические химические реакции). Устойчивость системы при $R<0$ в работе не рассматривается, поскольку соответствующие ревультаты могут быть получены из статьи [${ }^{6}$] заменой в ней знаков R и R_{d}. Это обстоятельство является следствием определенной симметрии амплитудных уравнений, допускающих преобразование инверсии. При таком преобразовании спектральная задача (3), (4) остается неизменной, если вместе с направлением градиента концентрации активной компоненты, изменить также знаки обоих чисел Рәлея.

Перейдем теперь к рассмотрению на диаграмме (R_{*}, L) колебательной неустойчивости; на фиг. 3 ей соответствуют зоны, расположенные над пунктирными кривыми. Из графиков следует, что с ростом числа Льюиса значения «колебательных» чисел Рэлея уменьшаются. Напомним, что для монотонных возмущений R. при $R_{d} \geqslant 0$ растет с увеличением L. Пересечение кривых $R_{*}(L)$, определяющих границы нарастающих монотонных п колебательных возмущений, указывает на смену формы неустойчивости. Графики показывают, что возникновение конвекции в виде стационарных колебаний возможно лишь при $L>1$, т. е. при $\chi>D$.

Из диаграммы видно, что имеется интервал значений $\Delta L\left(R_{d}\right)$, в котором равновесие неустойчиво по отношению к обоим типам возмущений. Определение характера возникающего в этом случае конвективного движения может быть произведено лишь на основе решения нелинейной системы уравнений конвекции.

В зависимости от величины диффузионного числа Рэлея в области $R_{d}<0$ графики $R_{*}(L)$, соответствующие монотонным и колебательным

Фиг. 4

Фиг. 5

вовмущениям, пересекаются либо в двух точках, либо не пересекаются совсем. Пограничным в этом смысле является значение $R_{d} \approx-2550$, при котором кривые $R_{*}(L)$ только касаются друг друга (близкий пример представлен на фиг. 3 кривыми 3).

Отметим еще одну особенность диаграммы устойчивости. При достаточно малом $R_{d}<0$ график $R_{*}(L)$ для колебательных возмущений (кривая 5) имеет «концевую» точку. Отсутствие зависимости $R_{*}(L)$ на остальной части плоскости (R_{*}, L) говорит о том, что при таких значениях R и L нейтральных колебательных возмущений в системе не существует. В этой области изменения параметров мнимая часть декремента λ_{i} становится отличной от нуля, когда λ_{r} уже отрицательно, т. е. монотонные возмущения непосредственно переходят в нарастающие колебания.

Из анализа спектров декрементов следует, что, по-видимому, подобные концевые точки существуют на колебательных нейтральных кривых и для других $R_{d}<0$, но при больших значениях числа Льюиса.

Наряду с вычислением критических чисел Рәлея при определении условий возникновения конвекции представляет интерес также нахождение формы соответствующих возмущений. При малой надкритичности структура конвективного движения должна быть близка к возмущениям, приводящим к кризису равновесия. Для их определения необходимо кроме собственных значений отыскать собственные функции w, θ и η краевой задачи (3), (4). Эти функции строились в виде линейной комбинации четырех частных решений с коэффициентами, определенными из однородной системы алгебраических уравнений при условии равенства нулю ее определителя. Один из четырех коәффициентов произволен и задает:

нормировку возмущений. В случае монотонной неустойчивости ($\lambda=\lambda_{r}$) собственные функции являются вещественными.

На фиг. 4 представлены амплитуды нейтральных возмущений скорости, на фиг. 5 - температуры (a) и концентрации (б), с помощью которых можно построить изотермы, линии постоянной концентрации и распределения вертіикальной компоненты скорости в конвективной ячейке. Кривые $1-4$ на фигурах соответствуют следующим значениям параметров $L, R, R_{d}, k: 1.2,0,-1425,3.1 ; 1.2,20000,-3000,5.8 ; 1.2,5000,-3000$, $4.2 ; 2.0,35000,0,4.2$ (в случае колебательной неустойчивости мнимые части амплитуд изображены штриховыми линиями). При построении графиков собственных функций для удобства использованы различные масщтабы: $w 10^{2}, \eta 10^{3} ; w 10, \theta 10^{3}, \eta 10^{2} ; w 10^{2}, \theta 10^{3}, \eta 10^{3} ; w_{r} 10, w_{i} 10, \theta_{r} 10^{3}, \theta_{i} 10^{4}$, $\eta 10^{2}, \eta_{i} 10^{2}$.

Для концентрационного аналога задачи Рәлея ($R=0$, график 1) распределения $w(z)$ и $\eta(z)$, как и следовало ожидать, симметричны относительно середины слоя. Кривые 2 при $R_{d}=-3000$ показывают пример амплитуд нейтральных возмущений, связанных преимущественно с тепловым механизмом неустойчивости. Из графиков видно, что конвекция развивается в верхней части слоя. Смена знака амплитуды скорости w означает, что возникающее движение имеет «двухәтажную» структуру, однако интенсивность конвекции у нижней границы весьма незначительна. Несколько неожиданной представляется форма критического возмущения температуры: к неустойчивости приводит повышение температуры в нижней части слоя и одновременное понижение ее в верхней. Характер возмущений w, θ и η, соответствующих неустойчивости концентрационной природы, при том же значении диффузионного числа Рэлея $R_{d}=-3000$ показав кривыми 3. Как следует из графиков, эти возмущения, аналогично задаче Рэлея, развиваются во всем объеме слоя. Некоторая асимметрия функций w, θ и η при $R \neq 0$ объясняется влиянием тепловой неустойчивости. Пример графиков амплитуд колебательных возмущений представлен кривыми 4 (функции η_{τ} и η_{i} в выбранном масштабе практически совпадают). Как уже отмечалось, колебательные возмущения связаны с тепловым механизмом неустойчивости ($R_{d}=0$), и зависимости w_{r}, θ_{r} и η_{r} качественно согласуются с графиками 2.

Авторы благодарят Е. М. Жуховицкого за обсуждение результатов работы.

Поступила 19 VI 1979

ЛИТЕРАТУРА

1. Kee R. J., Landram C. S., Miles J. C. Natural convection of a heat-generating fluid within closed vertical cylinders and spheres. Trans. ASME, Ser. C. J. Heat Transfer, 1976, vol. 98, № 1 (рус. перев.: Ки, Јандрам, Майлс. Свободвая конвекция тепловыделяющей жидкости в закрытых вертикальных цилиндрических и сферических сосудах. Тр. Амер. общ. инж.-механ. Теплопередача, 1976, 츠 1).
2. Gasser R. D., Kazimi M. S. Onset of convection in a porous medium with internal heat generation. Trans. ASME, Ser. C, J. Heat Transfer, 1976, vol. C 98, N 1 (pyc. перев.: Гассер, Казими. Возникновение конвекции в пористой среде с внутренним тепловыделением. Тр. Амер. общ. инж.-механ. Теплопередача, 1976, № 1).
3. Булашевич Ю. П., Хачай Ю. В. Конвективная устойчивость земных недр с радиоактивными источниками тепла. Изв. АН СССР, Физика Земли, 1975 , № 12.
4. Гериуни Г. З., Жуховицкий Е. М. Конвективная устойчивость. В сб.: Итоги науки и техники. Механика жидкости и газа, т. 11. М., ВИНИТИ, 1978.
5. Лысиков Ю. И., Пономарев О. А. Об одной модели нелинейного поглощения света. ПМТФ, 1974 , Л응 1.
6. Колесников А. К., Якушии В. И. О конвективной неустойчивости смеси с кондентрациопными источниками тепла. Инжж-фбз. ж., 1979, т. 36, Л 4.
7. Гериуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. М., «Наука», 1972.
8. Ланс Дж. Численные методы для быстродействующих вычислительных мащин. М., Изд-во иностр. лит., 1962.
