ОБТЕКАНИЕ СФЕРЫ ГИПЕРЗВУКОВЫМ ПОТОКОМ РАЗРЕЖЕННОГО ГАЗА

А. К. АРТАМОНОВ, В. Н. АРХИПОВ

Abstract

(Mосква) Известно, что уравнения Навье - Стокса плохо описывают структуру ударных волн в разрөженном газе. В задаче об обтекании сферы гиперзвуковым потоком разреженного газа это может привести к тому, что решение уравнений Навье Стокса даст при малых числах Рейнольдса неверные значения параметров в ударном слое перед сферой и на поверхности сферы.

Строгое репение задачи об обтекании сферы гиперзвуковым потоком разреженного газа в рамках уравнения Больцмана, а также решение этой задачи методом прямого моделирования Монте-Карло трудоемки, особенно при больших числах Маха M_{∞} набегающего потока и в области режимов течений, примыкающей к режимам сплошной среды. Поэтому оправданы поиски других путей решения задачи.

В работах [1,2] рассмотрены задачи о структуре прямой ударной волны и о гиперзвуковом продольном обтекании плоской пластины разреженным газом на основе уравнений, полученных из общего уравнения переноса в предположении, что функдия распределения является суперпозицией дельта-функции, описывающей равномерный набегающий поток, в котором тепловыми скоростями молекул можно пренебречь по сравнению со скоростью направленного движения, и функции распределения в приближении Навье - Стокса. Соответственно этому молекулы газа можно разбить на молекулы набегающего потока, концентрация которых уменьшается в направлении потока, п молекулы, описываемые функцией распределения в приближении Навье - Стокса, которые условно можно назвать молекулами «сплощной среды». Так как часть молекул набегающего потока может достигнуть твердой поверхности и отразиться от нее, не столкнувшись с другими молекулами, то в решение входит также функция распределения отраженных от поверхности

Результаты работ [${ }^{1,2}$] оказались в лучшем соответствии с экспериментальными данными, чем полученные в рамках уравнений Навье - Стокса. Соответствующая теория носит название «пучок - сплошная среда». Решение какой-либо задачи на основе этой теории следует рассматривать как приближенное. Степень приближения можно оценить путем сравнения результатов расчетов с экспериментальными данными либо же с результатами расчетов, проведенных в более строгой постановке.

В данной работе приводится решение задачи о структуре ударного слоя вблизи критической линии тока около сферы, обтекаемой гиперзвуковым потоком разреженного газа, полученное в рамках уравнений теории пучок - сплошная среда.

1. Основные уравнения. Если принять гипотезу об автомодельности течения вблизи критической линии тока [${ }^{3}$], то уравнения, описывающие течение в этой области в рамках теории пучок - сплошная среда, имеют вид

$$
\begin{aligned}
& \frac{d \rho}{d x}=-\frac{\rho V}{v}-\frac{2 \rho(u+v)}{r v}+\frac{1}{v} Q_{m} \\
& \frac{d}{d x}(\mu U)=R_{\infty}\left[\rho v U+\frac{2\left(p_{2}-p\right)+\rho u(u+v)}{r}\right]+\frac{10}{3} \frac{\mu(u+v)}{r^{2}}+ \\
& +\frac{1}{r}\left[\frac{d \mu}{d T} \theta(u+v)-\frac{1}{3} \mu V-2 \mu U\right]-R_{\infty} Q_{i \varphi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d p_{\mathbf{2}}}{d x}=\frac{\rho u(u+v)}{r}+\frac{\mu}{R_{\infty} r}\left(\frac{u+v}{r}-U\right) \\
& \frac{d v}{d x}=V, \quad \frac{d h}{d x}=H, \quad \frac{d u}{d x}=U, \quad \frac{d T}{d x}=\theta \\
& \frac{d V}{d x}=\frac{3 R_{\infty}}{4 \mu}\left\{\sigma A\left[\rho \theta-\frac{\rho V T r+2 \rho T(u+v)}{r v}+\frac{T}{v} Q_{m}\right]+\rho v V\right\}- \\
& -\frac{1}{\mu} \frac{d \mu}{d T} \theta V+\frac{1}{\mu} \frac{d \mu}{d T} \frac{\theta(u+v)}{r}-\frac{U}{2 r}+. \\
& +\frac{7(u+v)}{2 r^{2}}-\frac{2 V}{r}-\frac{3 R_{\infty}}{4 \mu} Q_{i r} \\
& \frac{d}{d x}(\mu H)=P\left\{R_{\infty}\left[\rho v H+\sigma A \rho\left(-\theta v+T V+\frac{2 T(u+v)}{r}\right)\right]-\right. \\
& \left.-\mu\left[2 V^{2}+\frac{4}{r^{2}}(u+v)^{2}\right]+\frac{2 \mu}{3 r^{2}}(r V+2 u+2 v)^{2}\right\}-\frac{2 \mu H}{r}+\frac{2 \mu h}{r^{2}}+ \\
& +R_{\infty} P\left(-\sigma A T Q_{m}+v Q_{i r}-Q_{e}\right) \\
& \frac{d n_{r}}{d x}=-\frac{2 n_{r}}{r}-\frac{1}{u_{r}} Q_{m r}, \quad \frac{d n_{b}}{d x}=Q_{m b} \\
& \mu=\mu(T), \quad p=\sigma A \rho T, \quad h=c_{p} T, \quad H=c_{p} \theta, \\
& \sigma A=\frac{1}{(\gamma-1) M_{\infty}{ }^{2}}, \quad c_{p}=\frac{c_{p} T_{\infty} *}{v_{\infty}{ }^{2}} \\
& u^{*}=v_{\infty}{ }^{*} u(x) \sin \varphi, \quad v^{*}=v_{\infty}{ }^{*} v(x) \cos \varphi \\
& \rho^{*}=n_{b \infty}{ }^{*} \rho(x), \quad \mu^{*}=\mu_{\infty}{ }^{*} \mu(x) \cos \varphi \\
& h^{*}=v_{\infty}{ }^{* 2}\left[h(x) \cos ^{2} \varphi+h_{2}(x) \sin ^{2} \varphi\right] \\
& p^{*}=n_{b \infty}{ }^{*} m^{*} v_{\infty}{ }^{* 2}\left[p(x) \cos ^{2} \varphi+p_{2}(x) \sin ^{2} \varphi\right] \\
& T^{*}=T_{\infty} *\left[T(x) \cos ^{2} \varphi+T_{2}(x) \sin ^{2} \varphi\right] \\
& n_{b}^{*}=n_{b \infty} * n_{b}(x), \quad n_{r}^{*}=n_{b \infty} * n_{r}(x), \quad u_{r}^{*}=v_{\infty} * u_{r}(x)
\end{aligned}
$$

Здесь $x^{*}=x r_{w}{ }^{*}$ - расстояние от поверхности сферы; $r_{w}{ }^{*}$ - радиус сферы; u^{*}, v^{*} - поперечная и продольная компоненты скорости сплошной среды; $\rho^{*}, h^{*}, p^{*}, T^{*}, \mu^{*}$ - соответственно плотность, энтальпия, давление, температура и коэффидиент вязкости сплошной среды; $R_{\infty}=$ $=n_{b \infty}{ }^{*} v_{\infty}{ }^{*} r_{w}{ }^{*} / \mu_{\infty}{ }^{*}$ - число Рейнольдса; P - число Прандтля; $r^{*}=r r_{w}{ }^{*}$; r^{*}, φ - сферические полярные координаты; $r^{*}=r_{w}{ }^{*}+x^{*} ; u_{b}^{*}=v_{\infty}{ }^{*}$ - скорость частиц набегающего потока; $u_{b}=u_{b} * / v_{\infty} *=1 ; u_{r}^{*}$ - скорость отраженных частиц; m^{*} - масса молекулы; $n_{b}{ }^{*}, n_{\tau}{ }^{*}$ - концентрации частиц набегающего потока и отраженных от поверхности; $c_{p}{ }^{*}$ - удельная теплоемкость сплошной среды при постоянном давлении; γ - отношение удельных теплоемкостей.

Индекс ∞ соответствует набегающему потоку, w - поверхности тела; * - размерные величины.

Уравнения (1.1) отличаются от уравнений Навье - Стокса наличием в них слагаемых типа источников, описывающих обмен массой, импульсом и энергией между тремя названными выше классами частид, а также

наличием в системе двух уравнений, описывающих изменение концентраций молекул набегающего потока и отраженных от тела.

Функции $Q_{m}, Q_{i q}, Q_{i r}, Q_{m r}, Q_{m b}, Q_{e}$ представляют собой интегралы, причем в подынтегральные выражения входят неизвестные до решения задачи температура, скорость и т. д. Для функции распределения, соответствующей набегающему потоку, имеющей вид дельта-функции, и для моле-кул-«твердых сфер», а также для простого (лучевого) закона отражения молекул от поверхности со скоростью, равной средней тепловой скорости, соответствующей температуре поверхности, могут быть получены явные выражения этих функций через параметры течения (см. [${ }^{2}$]).

Граничные условия следующие. При $x \rightarrow \infty$ в набегающем потоке

$$
\begin{align*}
& \rho=n_{r}=U=V=H=\theta=0 \tag{1.2}\\
& u=T=1, \quad p=p_{2}=p_{\infty}, \quad h=h_{\infty}, \quad v=-1
\end{align*}
$$

При $x=0$ (на поверхности тела) ставятся условия непротекания и скольжения.
2. Метод решения. Систему (1.1) и краевые условия можно записать в виде

$$
\begin{align*}
& \frac{d y_{i}}{d x}=f_{i}\left(x, y_{1}, \ldots, y_{n}\right), \quad i=1, \ldots, n \\
& \varphi_{s}\left(x^{(0)}, y_{1}^{(0)}, \ldots, y_{n}^{(0)}\right)=0, \quad s=1, \ldots, m \tag{2.1}\\
& \varphi_{s}\left(x^{(1)}, y_{1}^{(1)}, \ldots, y_{n}^{(1)}\right)=0 . \quad s=m+1, \ldots, n
\end{align*}
$$

В рассматриваемой задаче $x^{(0)}=0$ (поверхность тела), $x^{(1)}=\infty$ (набегающий поток); граничные условия в набегающем потоке при численном решении задачи переносятся на конечное расстояние от тела.

Предположим, что функции f_{i} и все пх частные производные по y_{i} непрерывно вависят от всех аргументов. Тогда существует единственное решение, удовлетворяющее начальным условиям $y_{j}=y_{j}^{(k)}$ при $x=x^{(k)}$. Пусть это будет решение $y_{j}=\varphi_{j}(x$; $\left.x^{(k)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right)$. При $x=x^{(0)}, x^{(1)}$ оно принимает вид

$$
y_{j}^{(0)}=\psi_{j}\left(x^{(0)} ; x^{(k)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right), \quad y_{j}^{(1)}=\psi_{j}\left(x^{(1)} ; x^{(k)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right)
$$

Тогда

$$
\begin{aligned}
& \varphi_{s}\left(x^{(0)}, y_{1}^{(0)}, \ldots, y_{n}^{(0)}\right)= \\
& =\varphi_{s}\left(x^{(0)}, \psi_{1}\left(x^{(0)}, x^{(k)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right), \ldots, \psi_{n}\left(x^{(0)}, x^{(k)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right)\right)= \\
& =\Phi_{s}\left(x^{(0)}, x^{(k)}, y_{1}^{(k)}, \ldots . y_{n}^{(k)}\right) \\
& \varphi_{s}\left(x^{(1)}, y_{1}^{(1)}, \ldots, y_{n}^{(1)}\right)= \\
& =\varphi_{s}\left(x^{(1)}, \psi_{1}\left(x^{(1)}, x^{(h)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right), \ldots, \psi_{n}\left(x^{(1)}, x^{(k)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right)\right)= \\
& =\Phi_{s}\left(x^{(1)}, x^{(k)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right)
\end{aligned}
$$

п краевые условия могут быть формально записаны в виде

$$
\begin{array}{ll}
\Phi_{s}\left(x^{(0)}, x^{(h)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right)=0 & (s=1, \ldots, m) \tag{2.2}\\
\Phi_{s}\left(x^{(1)}, x^{(h)}, y_{1}^{(h)}, \ldots, y_{n}^{(h)}\right)=0 & (s=m+1, \ldots, n)
\end{array}
$$

Систему (2.2) можно рассматривать как систему нелинейных алгебраических уравнений относительно таких значений $y_{j}^{(k)}$, которые удовлетворяют краевым

условиям, и, как таковую, ее можно решать каким-либо приближенным методом, например, методом Ньютона. Значения функций $\Phi_{s}\left(x^{(0)}, x^{(h)}, y_{1}^{(k)}, \ldots, y_{n}^{(k)}\right)$, $\Phi_{s}\left(x^{(1)}, x^{(k)}, y_{1}^{(h)}, \ldots, y_{n}^{(k)}\right)$ и пх производных по $y_{j}^{(k)}$, нужные при решении системы алгебраических уравнений методом Ньютона, можно получить численно, решив несколько раз систему (2.1) каким-либо методом от различных наборов начальных данных $y_{j}^{(k)}$ в интервалах $\left[x^{(k)}, x^{(1)}\right]$ и $\left[x^{(k)}, x^{(0)}\right]$. Точки ($x^{(k)}, y_{j}^{(k)}$) нөдолжны быть особыми.
3. Результаты расчетов. Решение исходной задачи проводилось по программе, составленной с использованием метода Рунге - Кутта для решения задачп Кошп (2.1) п метода Ньютона для решения системы алгебраических уравнений (2.2). В качестве системы (2.1) использовалась система (1.1) или система уравнений Навье - Стокса. Так как краевые точки $x=x^{(0)}$ п $x=x^{(1)}$ являются особыми точками указанных систем уравнений, начальная точка $x=x^{(k)}$ выбиралась внутри ударного слоя.

Расчеты проведены при $M_{\infty}=10, P=3 / 4, \gamma=5 / 3$ и $7 / 5, T_{w}=T_{0}$ и $T_{w}=1$ (T_{0} - температура торможения в набегающем потоке). Некоторые результаты расчетов приведены на фиг. 1-4. Сплошные кривые - результаты решения системы (1.1), штриховые - результаты решения системы уравнений Навье - Стокса.

На фиг. 1, $2\left(T_{w}=T, \gamma=5 / 3, R_{\infty}=10\right)$ приведены распределения парамет-: ров течения в ударном слое. На фиг. $1 n_{t}$ - суммарная плотность частиц всех трех видов. На фиг. 2 сплошными кривыми показаны функцик $u_{t}=\left(n_{b}+\rho u\right) / n_{t}, v_{t}=\left(\rho v-n_{b}+n_{r} u_{r}\right) / n_{t}$.

Увеличение поперечного размера области повышенной температуры по сравнению с тем, который дает решение уравнений Навье - Стокса, находится в соответствии с результатами решения задачи о структуре прямой ударной волны в рамках точного и модельных уравнений Больцмана и методом Монте-Карло.

На фиг. 3 приведены зависимости отношения суммарного тепловогопотока $q^{*}\left(K_{\infty}\right)$ от частиц сплошной среды, пучка и отраженных от поверхности в критической точке сферы с "холодной» поверхностью ($T_{w}{ }^{*}=T_{\infty}{ }^{*}$) при $\gamma=7 / 5$ к свободномолекулярному значению теплового потока, рассчитанному при полной аккомодации энергии, $q_{f m}{ }^{*}$. Здесь число Кнудсена $K_{\infty}=l_{\infty}{ }^{*} / r_{w}{ }^{*} ; l_{\infty}{ }^{*}$ - длина свободного пробега, соответствующая условиям в набегающем потоке. На этой же фигуре приведены результаты расчетов методом прямого моделирования Берда, заимствованные из работы ["] (штрихпунктирная кривая). Результаты решения уравнений теории пучок - сплошная среда находятся в неплохом соответствии с результатами Берда, тогда как уравнения Навье - Стокса дают при $K_{\infty} \rightarrow \infty$ сильно завышенные тепловые потоки.

На фиг. 4 приведена зависимость $p_{v}\left(R_{\infty}\right)$ в критической точке при $\gamma=7 / 5$ и условии, что поверхность адиабатическая ($T_{w}{ }^{*}=T_{0}{ }^{*}$). На оси ординат черточкой отмечен свободномолекулярный предел при полной аккомодации энергии, $p_{w f m}$. При $K_{\infty} \rightarrow \infty$ результаты решения уравнений теории пучок - сплошная среда ближе к свободномолекулярному пределу, чем результаты решения уравнений Навье - Стокса.

Расчеты при числах Рейнольдса $R_{\infty}>100$ проводились в приближении тонкого ударного слоя методом работы [5] . Полученные при этом результаты практически совпали с результатами решения уравнений Навье Стогса.

Погрешность, вносимую предположением об автомодельности рассматриваемого течения, которое сводит решение двумерной задачи об обтека-

нии сферы к решению одномерной задачи, можно оценить путем сравнения результатов расчетов, проведенных в рамках уравнений Навье Стокса с использованием и без использования этого предположения. Особенно интересен интервал чисел $R_{\infty}<50$, в котором расхождение результатов, полученных на основе теории пучок - сплошная среда и уравнений

Фиг. 1

Фиг. 3

Фит. 2

Фиг. 4

Навье - Стокса, наибольшее. К сожалению, имеются лишь немногочисленные и отрывочные результаты расчетов двумерного обтекания сферы вязким газом при $20<R_{\infty}<50$ (без предположения об автомодельности), опубликованные, например, в работах [${ }^{6,7}$]. Кроме того, В. В. Крикунов и Ю. М. Липницкий любезно сообщили нам результаты расчета двумерного обтекания сферы по схеме третьего порядка точности [${ }^{8}$] при $M_{\infty}=2$, $R_{\infty}=15$. Сравнение с результатами расчетов, проведенных в предположении об автомодельности, ноказало, что различие результатов решения одномерной и двумерной задач находится приблизительно в пределах 10%. Это не превышает разброса опубликованных в научной литературе результатов расчетов обтекания сферы гиперзвуковым потоком разреженного газа во всей области режимов обтекания, промежуточной между режимами сплошной среды и свободномолекулярными, полученных различными методами (методы Монте-Карло; решения модельных кинетиче-

ских уравнений; различные численные схемы решения уравнений НавьеСтокса), а также разброса соответствующих экспериментальных результатов.

Отличие приведенных выше результатов расчета в рамках теории пучок - сплошная среда при $R_{\infty}<50$, полученных с использованием предположения об автомодельности, от результатов, полученных методом Берда, также не превышает 10%, тогда как при этих же R_{∞} результаты решения уравнений Навье - Стокса отличаются от результатов, полученных методом прямого моделирования, гораздо больше. Отсюда следует, что в указанной области применение теории пучок - сплошная среда более оправдано, чем применение уравнений Навье - Стокса.

Поступила 6 VII 1978

ЛИТЕРАТУРА

1. Turcotte D. L., Scholnick I. M. Structure of strong shock waves. Phys. Fluids, 1969, vol. 12, No. 5, pt 2.
2. Kot S. C., Turcotte D. L. Beam-continuum model for hypersonic flow over a flat plate. AIAA Journal, 1972, vol. 10, No. 3.
3. Левинский Е., Иосихара Х. Обтекание сферы гиперзвуковым потоком разреженного газа. В кн.: Исследование гиперзвуковых течений. М., «Мир», 1964.
4. Jain A. C., Adimurthy V. Hypersonic merged stagnation shock layers. AIAA Journal, 1974, vol. 12, No. 3.
5. Архипов B. Н., Поленов А. Н. Обтекание сферы гиперзвуковым потоком вязкого релаксирующего газа. Изв. АН СССР. МЖГ, 1971, № 3.
6. Молодчов В. К., Толстых А. Н. О расчете сверхзвукового вязкого обтекания затупленных тел. В сб. Тр. секции но числ. методам в газовой динамике 2 -го Междунар. коллоквиума по газодинамике взрыва и реагирующих систем, т. 1. М., 1971, ВЦ АН СССР, 1971.
7. Павлов В. М. О решении полных уравнений Навье - Стокса в задачах обтекания затупленных тел. В сб. Тр. секдии по числ. методам в газовой динамике 2 -го Междунар. коллоквиума по газодинамике взрыва п реагирующих спстем, т. 1. М., ВЦ АН СССР, 1971.
8. Еремин В. В., Липницкий Ю. М. О построении многомерных разностных схем третьего порядка точности. Ж. вычисл. матем. и матем. физ., 1974, т. 14, № 2.
