К ВЫВОДУ УРАВНЕНИЙ МЕДЛЕННЫХ НЕИЗОТЕРМИЧЕСКИХ ТЕЧЕНИИ ГАЗА

В. С. ГАЛКИН, М. Н. КОГАН

(Москва)
В последние десять лет исходя из приближения Барнетта было төоретически щредсказано несколько новых явлений: термо- и концентрационно-стрессовые конвекции [${ }^{1-3}$], а также эфффекты, обусловленные действием магнитного поля в многоатомном газе (вязкомагнитный тепловой поток и т. д. [4]). Ранеө теоретически было показано (см. [5]), что при определенных условиях в выражении для бародиффузии необходимо учитывать некоторые члены барнеттовского приближения. Выводы о вязкомагнитном тепловом потоке подтверждены недавно экспериментом [4]. Предсказанные явления строго следуют из уравнений Барнетта. Однако у многих гидродинамиков имеется недоверие к самим этим уравнениям, обусловленное, по-видимому, отчасти привычкой к классическим уравнениям Навье - Стокса, безотказно служащим на протяжении полутора столетий.

В связи с әтим ниже излагается эволюция представлений об обоснованности и применимости приближения Барнетта. Обсуждаются минимальные предположения, которые необходимо сделать для вывода уравнений "медленных» (число Рейнольдса $R=O(1)$) существенно неизотермических ($\nabla \ln T=O(1)$) течений газа как сплошной среды (число Кнудсена $K \rightarrow 0$), когда в уравнении импульса производные от температурных барнеттовских напряжений имеют тот же порядок величины, что и эйлеровские и навье-стоксовские слагаемые этого уравнения [1-3].

1. Одним из способов вывода уравнений газодинамики является применение метода возмущений к кинетическому уравнению Больцмана (метода Чепмена Энскога). Перед дифференциальной частью этого уравнения, записанного в безразмерном виде, стоит множитель K (число Кнудсена). Для числа Кнудсена $K \rightarrow 0$ его решение ищется в виде асимптотического разложения по степеням K. При по мощи этого разложения вычисляются соответствующие ряды для переносных свойств. Подставляя их в общие уравнения сохранения, получаем уравнения Эйлера, Навье - Стокса и Барнетта, если учесть нулевые, шервые и вторые члены этих рядов соответственно. Указанный метод позволяет не только вывести эти уравнения, но и рассчитать входящие в них коэффициенты переноса.

Великолепное качественное и количественное согласие расчетных данных по навье-стоксовским переносным свойствам с экспериментальными, открытиө таких эфॉфектов, как термодиффузия,- триумф кинетической теории, с одной стороны, и методов решения уравнения Больцмана в вйде ряда по K - с другой.

В послевоенные годы довольно большой интерес у аэродинамиков вызвали уравнения Барнетта. В основе лежала надежда на то, что эти уравнения позволят продвинуться в задачах гиперзвуковой динамики разреженного газа в сторону больших K, обходясь без численного решения сложного кинетического уравнения. При помощи уравпений Барнетта был решен ряд задач: течение Куэтта, распространение вынужденных ультразвуковых колебаний, структура ударной волны и т. д. lіритический обзор полученных результатов был дан в [${ }^{6}$]. Одним из рассмотренных там вопросов, решаемых путем сопоставления теоретических и экспериментальных данных, был вопрос о том, насколько «продвигают» в сторону больших K уравнения Барнетта решение задач по сравнению с уравнениями Навье-Стокса. Оказалось, что в задаче об ультразвуке решение первых заметно ближе к эксперименту при $v \sim 0.1$, однако различия результатов по Барнетту п Навье-Стоксу здесь не превышают 15% (ν-отношение частоты колебаний к частоте столкновөний). В случае структуры ударной волны при $M \approx 1.8$ было трудно отдать предшочтение той или иной теории ввиду разброса экспериментальных данных, однако численное решение уравнений Барнетта удалось получить лишь для $M \leqslant 2.1$, решение же уравнений Навье - Стокса существует для любых $M>1$.

Таким образом, в случае очень важной для гиперзвуковой динамики разреженного газа вадачи о структуре ударной волны уравнения Барнетта надежд не оправ-

дали. Для оценки их эффективности важным было то, что они гораздо сложнее уравнений Навье - Стокса, а порядок их выше. Вопрос же о граничных условиях для полной системы уравнений Барнетта не решен до сих пор, поэтому применялись не обоснованные строго модели этих граничных условий. Наконец, появились важные аргументы в пользу той точки зрения, что разложения решения уравнения Больцмана в ряды по $K \rightarrow 0$ в общем случае являются асимптотическими (некоторые доказательства этого для ли:еааризованного уравнения Больцмана получены в [7]), и поэтому уравнения Барнетта в общем случае могут лишь незначительно уточнять уравнения Навье - Стокса, если носледние описывают течение в главном по K приближении. А именно так обстоит дело в сверхзвуковой аэродинамике.

В силу изложенного, как сказано в [8], «уравнения Барнетта в гидродинамике рассматриваются с мрачным скептицизмом». Появились даже работы, вообще ставящие под сомнение справедливость высщих (начиная с барнеттовского) приближений метода Чепмена - Энскога. Так, в [${ }^{9}$] методом многих масштабов строится внешнее асимптотическое разложение решения задачи Коши для уравнения Больцмана при $K \rightarrow 0$ и делается вывод, что в получающихся уравнениях «порядок пространственных производных сохраняется во всех высших приближениях... известные уравнения Барнетта являются, таким образом, результатом неправильно построенного разложения». Этот вывод, однако, объясняется наложением неправильных требований на решєние: фактически сначала барнеттовские и т. д. слагаемые компонентов тензора напряжений и вектора теплового потока полагаются равными нулю, а потом делается вывод об их отсутствии (подробнее см. [10]).

В [${ }^{11}$] построено общее решение стационарного одномерного линеаризованного уравнения Больцмана. Интересным свойством (справедливым и в трехмерном случае) этого репения является то, что на расстояниях от стенок, больших нескольких длин пробега молекул, макроскопические переменные удовлетворяют линеаризованным уравнениям сохранения в приближении Навье - Стокса (т. е. уравнениям Стокса «ползущих» движений). Отсюда сделан вывод, что «доказанный выше результат обосновывает успех метода Чепмена - Энскога на уровне уравнений Навье Стокса и его несостоятельность на более высоких уровнях». Иными словами, метод хорошп для вывода уравнений Стокса и плох для вывода линеаризованных уравнений Барнетта и т. д.

На самом деле последний вывод не следует из установленного в [${ }^{11}$] факта. Именно, в [12] выведена общая структура уравнений сохранения, получаемых методом Чепмена - Энскога из линеаризованного уравнения Больцмана. Используя эти результаты, легко показать [${ }^{10}$], что в данном частном (линейном стационарном) случае действительно уравнения сохранения в любом приближении сводятся к уравнениям Стокса (ибо тогда производные от барнеттовских и т. д. слагаемых напряжений и тепловых потоков равны нулю). Следовательно, рассматриваемый результат работы [${ }^{11}$] ни в коей мере не умаляет состоятельность метода Чепмена Энскога для высших приближений. Напротив, он следует из этого метода

Однако, несмотря на распространившийся скептицизм, интерес к приближению Барнетта не угас.

Были исправлены некоторые заключения об аффективности уравнений Барнетта. Первые опыты по структуре ударной волны, рассмотренные в [${ }^{6}$], обладали недостаточной точностью. Более точные данные о профиле плотности в ударной волне показали [${ }^{13}$], что результаты решения этой задачи шо Барнетту при $M \approx 2$ несколько лучше согласуются с экспериментом, чем по Навье - Стоксу. При $M>2$ уравнения Навье - Стонса «работают» неудовлетворительно. Вопрос о существовании решения уравнений Барнетта при таких M был пересмотрен. Оказалось, что сделанный ранее вывод о несуществовании решения уравнений Барнетта при $M \geqslant 2.1$ основан на использовании неудачной расчетной схемы. В [${ }^{14}$] дано численное решение этих уравнений вплоть до $M=4$.
2. До сих пор рассматривались работы, в которых уравнения Барнетта использовались для уточнения решения. Однако коль скоро разложение решения уравнения Больцмана по $K \rightarrow 0$ асимптотическое, то приближение Барнетта может иметь важное значение только тогда, когда оно участвует в формировании основного приближения к решению или тем более определяет его. Поэтому в [${ }^{1,2}$] был поставлен вопрос, существуют ли такие классы течений газа как сплошной среды ($K \rightarrow 0$), для описания которых уже в основном (главном) приближении необходимо учитывать те или иные барнеттовские слагаемые уравнений сохранения. Было показано, что для «медленных» существенно неизотермических течений, когда

$$
\begin{equation*}
u=c . O(K), \nabla \ln T=O(1), R \approx M K^{-1}=O(1) \tag{2.1}
\end{equation*}
$$

производные от температурных напряжений в уравнении импульса основного порядка величины (а в смесях газов - производные от концентрационных напряжений [${ }^{3}$]). Здесь c_{*} - характерная средняя тепловая скорость, звездочкой снизу всюду ниже вводятся характерные значения, $\nabla \sim 1 / L * \sim 1$, где $L_{.}$- характерный размер течения.

Этот вывод является принципиально важным, так как уравневия Навье - Стокса, считавшиеся фундаментом механики газа как сплошной среды, здесь недействительны. Кроме того, температурные напряжения вызывают ряд новых әффектов: термострессовую конвекцию, электростатическую аналогию и т. д. (см. обзор [$\left.{ }^{3}\right]$). Необходимо подчеркнуть также, что порядок получающихся уравнений тот же, что и порядок уравнений Навье - Стокса.

В связи с трудностью постановки чистых опытов, обусловленной наличием нескольких трудноразделимых эффектов одного порядка величины, прямых экспериментальных подтверждений этих явлений пока нет. Поэтому важными являются эксперименты по исследованию других эфффектов, вызванных барнеттовскими слагаемыми компонентов тензора напряжений или вектора теплового потока. Таковым является вязкомагнитный тепловой поток: если на течение многоатомного газа между параллельными пластинами наложено внешнее магнитное поле H, то в барнеттовском приближении имеет место поперечный тепловой поток $q_{v}=$ $=Q(H) \partial^{2} u_{x} / \partial z^{2}$, отсутствующий в приближении Навье - Стокса.

B ['] представлены интересные результаты тонких измерений q_{v} в N_{2}, $\mathrm{CO}, \mathrm{CH}_{4}$. Экспериментальные значения хорошо согласуются с предсказанными на основе приближения Барнетта.
3. В отсутствие прямых экспериментальных подтверждений возникли дискуссии о степени достоверности термострессовых явлений и всей постановки задачи о медленных неизотермических течениях газа (всюду ниже речь пойдет об однокомпонентном газе). Основное возражение основано на том, что для нелинейного уравнения Больцмана нет строгих математических доказательств асимтотического характера разложений его решений по K. В связи с этим ниже дается наиболее простой вывод уравнений медленных неизотермических течений (уравнений МНТ) и сформулированы соответствующие минимальные предположения.

Для получения искомых уравнений в ['] были использованы результаты метода Чепмена - Энскога, в котором предполагается, что $u=c_{*} O$ (1). Тогда функция распределения

$$
\begin{align*}
& f=f_{0}\left(1+\varphi_{1}+\varphi_{2}+F\right) \tag{3.1}\\
& \varphi_{1}=\varphi_{1}^{(T)}+\varphi_{2}^{(u)}, \quad \varphi_{1}^{(T)}=A(c) \mathbf{c} \nabla T, \quad \varphi_{1}^{(u)}=B(c)\left\langle c_{i} c_{j}\right\rangle \frac{\partial u_{i}}{\partial x_{j}} \tag{3.2}\\
& \varphi_{2}=\varphi_{2}^{(T)}+\varphi_{2}^{(*)}, \quad \varphi_{2}^{(T)}=E_{i j}(\mathbf{c})\left\langle\frac{\partial^{2} T}{\partial x_{i} \partial x_{j}}\right\rangle+F_{i j}(\mathbf{c})\left\langle\frac{\partial T}{\partial x_{j}} \frac{\partial T}{\partial x_{j}}\right\rangle \tag{3.3}
\end{align*}
$$

Здесь f_{0} - локально-максвелловская функция, $\varphi_{1}=O(K)$ - навье-стоксовский добавог, $\varphi_{2}=O\left(K^{2}\right)$ - барнеттовский, причем $\varphi_{2}^{(T)}$ определяет температурные напряжения, в $\varphi_{2}^{(*)}$ входят члены типа $\nabla \mathbf{u} \nabla \mathbf{u}, \nabla \mathbf{u} \nabla T, \nabla^{2} p$, $\nabla T \nabla p ; F$ - остаток ряда; с - собственная скорость молекулы; оператором $\left\rangle\right.$ вводится бездивергентный тензор: $\left\langle A_{i j}\right\rangle=1 / 2\left(A_{i j}+A_{j i}\right)-1 / 3 \delta_{i j} A_{k h}$.

При выводе уравнений МНТ в соответствии с определением (2.1) в разложении (4.1) полагается $u=c_{*} O(K)$. Тогда $\varphi_{1}^{(u)}$ тмеет порядок K^{2},

а $\varphi_{2}^{(*)}$ - порядок K^{4}, и происходит сдвиг «скоростных» слагаемых в сторону более высоких приближений.

Здесь учтено, что для медленных движений, как это следует из уравнения импульса

$$
\begin{equation*}
p=p_{*}[1+\pi(\mathbf{x})], \quad|\pi|=O\left(K^{2}\right) \tag{3.4}
\end{equation*}
$$

Можно с самого начала при разложении решения уравнения Больцмана в ряд по K учесть оценку $u=c_{*} O(K)$. Как и следовало ожидать, окончательные уравнения МНТ получаются теми же [${ }^{15}$].

Уравнения МНТ справедливы, если неучтенный при их выводе остаток ряда мал, т. е. если $F=o\left(K^{2}\right)$. Поскольку доказательства этого пока нет, предположим, что это не так, и рассмотрим три возможные «криминальные» ситуации.

Случай A. Пусть F таково, что оно может скомпенсировать темпера'урные барнеттовские слагаемые $\varphi_{2}^{(T)}$ (и, следовательно, температурные напряжения). Более того, предположим, что F может иметь более низкий порядок, чем $\varphi_{2}^{(T)}=O\left(K^{2}\right)$, т. е. положим

$$
\begin{equation*}
f=f_{0}\left(1+\varphi_{1}+F_{1}\right), \quad F_{1}=o(K) \tag{3.5}
\end{equation*}
$$

Последнее предполагает также, что навье-стоксовское приближение $f=f_{0}\left(1+\varphi_{1}\right)$ является асимптотическим решением уравнения Больдмана и справедливы уравнения Навье - Стокса. Как отмечалось выше, этот факт всесторонне подтвержден опытом.

Случай B. Пусть F удовлетворяет условиям (3.5) и, кроме того, «гасит» $\varphi_{1}^{(u)}$; имеем

$$
\begin{equation*}
f=f_{0}\left(1+\varphi_{1}^{(T)}+F_{2}\right), \quad F_{2}=o(K) \tag{3.6}
\end{equation*}
$$

Это предполагает справедливым закон Фурье, но нарушенным навьестоксовский закон для напряжений.

Случай C. Наконец, предположим, что справедливость приближения Навье - Стокса неясна, а известно лишь, что функция распределения близка к локально-равновесной

$$
\begin{equation*}
f=f_{0}\left(1+F_{3}\right), \quad F_{3}=o(1) \tag{3.7}
\end{equation*}
$$

Это предположение принято в термодинамике необратимых процессов как исходное.
4. Покажем, что сделанные предположения приводят к противоречшю. Будем исходить из кинетического уравнения Больцмана, справедливость которого многократно подтверждена экспериментом.

Рассмотрим стационарный случай. Умножим уравнение Больцмана на $m, m c_{i}, m c_{i} c_{j}, m c_{i} c_{j} c_{k}$ и проиптегрируем по \mathbf{c}, предполагая все операции законными (в дальнейшем будут сделаны соответствующие оговорки). Последовательно получим (см., например, [${ }^{18}$]) уравнения неразрывности, импульса, энергии, уравнения для напряжений $p_{i j}$ и моментов третьего порядка $\mathrm{M}_{i j k}$

$$
\begin{align*}
& \frac{D \rho}{D t}+\rho \nabla \mathbf{u}=0, \quad \frac{D}{D t}=u_{j} \frac{\partial}{\partial x_{j}} \tag{4.1}\\
& \rho \frac{D u_{i}}{D t}+\frac{\partial M_{i j}}{\partial x_{j}}=0, \quad M_{i j}=p \delta_{i j}+p_{i j} \tag{4.2}
\end{align*}
$$

$$
\begin{align*}
& \frac{3}{2} \frac{D p}{D t}+\frac{5}{2} p \nabla \mathbf{u}+p_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial q_{i}}{\partial x_{i}}=0, \quad p=\frac{k}{m} \rho T \tag{4.3}\\
& \frac{\partial}{\partial x_{r}}\left(u_{r} p_{i j}\right)+\frac{\partial M_{i j r}}{\partial x_{r}}-\frac{2}{3} \delta_{i j} \frac{\partial q_{r}}{\partial x_{r}}+ \tag{4.4}\\
& +2\left\langle p_{i r} \frac{\partial u_{j}}{\partial x_{r}}\right\rangle+2 p\left\langle\frac{\partial u_{i}}{\partial x_{j}}\right\rangle=-\frac{p}{\mu} p_{i j} \\
& \frac{\partial}{\partial x_{r}}\left(u_{r} M_{i j k}+M_{i j k r}\right)+M_{i j r} \frac{\partial u_{k}}{\partial x_{r}}+M_{i r k} \frac{\partial u_{j}}{\partial x_{r}}+M_{j k r} \frac{\partial u_{i}}{\partial x_{r}}+ \tag{4.5}\\
& +M_{i j} \frac{\nu u_{k}}{D t}+M_{i k} \frac{D u_{i}}{D t}+M_{j k} \frac{D u_{i}}{D t}=. \\
& =-\frac{p}{6 \mu}\left(9 M_{i j k}-2 \delta_{j k} q_{i}-2 \delta_{i k} q_{j}-2 \delta_{i j} q_{k}\right) \\
& p_{i j}=m \int\left\langle c_{i} c_{j}\right\rangle f d \mathbf{c}, \quad M_{i j \ldots . . r}=m \int c_{i} c_{j} \ldots c_{r} f d \mathbf{c}, \quad q_{i}=\frac{1}{2} M_{i k k} \tag{4.6}
\end{align*}
$$

Здесь m - масса молекулы.
Уравнения (4.1)-(4.5) - точные следствия уравнения Больцмана в случае максвелловских молекул, когда коэффициент вязкости $\mu \sim T$. Будем пока рассматривать именно такой случай.

Чтобы замкнуть уравнения сохранения (4.1)-(4.3), нужно выразить $p_{i j}, q_{i}$ через газодинамические переменные. Для этого введем предположение, что существуют дифференцируемые моменты функции распределения вплоть до третьего порядка и моменты от интеграла столкновений вплоть до второго порядка, т. е. понятия плотности, скорости, температуры и теплового потока. Обычно это предположение не оговаривается, так как в противном случае нельзя даже выписать уравнения сохранения и тем более применять гидродинамическое описание. В соответствии с этим предположением входящие в (4.4) моменты функции распределения и их производные являются ограниченными. Обозначим безразмерные переменные звездочкой сверху и положим $x_{i}^{*}=x_{i} / L_{*}, \quad u_{i}{ }^{*}=u_{i} / c_{*}, \quad p_{i j}{ }^{*}=p_{i j} / \rho * c_{*}{ }^{2}$, $M_{i j k}^{*}=M_{i j k} / \rho_{*} c_{*}{ }^{3}$. Число Кнудсена будем вычислять по формуле

$$
\begin{equation*}
K=\mu_{*} c_{*} / p_{*} L \tag{4.7}
\end{equation*}
$$

Используя оденку (2.1) для \mathbf{u}, перепишем (4.4) в виде

$$
\begin{align*}
& K^{2} \frac{\partial}{\partial x_{r}^{*}}\left(u_{r}^{*} p_{i j}^{*}\right)+K \frac{\partial M_{i j r}^{*}}{\partial x_{r}^{*}}-\frac{2}{3} K \delta_{i j} \frac{\partial q_{r}^{*}}{\partial x_{r}^{*}}+ \tag{4.8}\\
& +2 K^{2}\left\langle p_{i r}^{*} \frac{\partial u_{j}^{*}}{\partial x_{r}^{*}}\right\rangle+K^{2} 2 p^{*}\left\langle\frac{\partial u_{i}^{*}}{\partial x_{j}^{*}}\right\rangle=-\frac{p^{*}}{\mu^{*}} p_{i j} *
\end{align*}
$$

Отсюда следует, что $p_{i j} * \leqslant O(K)$ при $K \rightarrow 0$. Пренебрегая величинами порядка K^{3}, найдем (используя известный метод Максвелла)

$$
\begin{equation*}
p_{i j}^{*}=-K_{2} 2 \mu^{*}\left\langle\frac{\partial u_{i}^{*}}{\partial x_{j}^{*}}\right\rangle+K \frac{\mu^{*}}{p^{*}}\left(\frac{2}{3} \delta_{i j} \frac{\partial q_{r}^{*}}{\partial x_{r}{ }^{*}}-\frac{\partial M_{i j r}^{*}}{\partial x_{r}^{*}}\right) \tag{4.9}
\end{equation*}
$$

Таким образом, ограничившись минимальными предположениями о свойствах решения, видим, что в случае медленных неизотермических течений в $p_{i j}$ кроме первого (навье-стоксовского) члена входят еще производные от моментов третьего порядка. Необходимо вычислить эти производные и носмотреть, не «гасят» ли слагаемые в скобках формулы (4.9) друг друга так, что их разность оказывается величиной порядка $\delta<O(K)$. К этому сводится поставленный выше вопрос о свойствах разложений решения уравнения Больцмана по K.

Если предположение A справедливо, то, подставляя функцию распределения (3.5) в определение тензора напряжений (4.6), найдем

$$
\begin{equation*}
p_{i j}^{*}=-K^{2} 2 \mu^{*}\left\langle\frac{\partial u_{i}^{*}}{\partial x_{j}^{*}}\right\rangle+o(K) \tag{4.10}
\end{equation*}
$$

Первый (навье-стоксовский) член в (4.10) в соответствии с определением медленных течений порядка K^{2}. Следовательно, в этом случае в представлении (3.5) остаток ряда F «портит» не только барнеттовское выражение для $p_{i j}$, но и навье-стоксовское.

При использовании такого «прямого» способа вычисления тензора напряжений для замыкания уравнения импульса (4.2) необходимо существование лишь дифференцируемых моментов второго порядка. Однако если сделать, как п выше, обычно принимаемое более мягкое предположение о существовании дифференцируемых моментов третьего порядка. то для $p_{i j}$ справедливо приближение (4.9). Подставляя в него (3.5) для вычисления моментов третьего порядка, получим

$$
\begin{align*}
& p_{i j}{ }^{*}=-K^{2} 2 \mu^{*}\left\langle\frac{\partial u_{i}^{*}}{\partial x_{j}^{*}}\right\rangle-K \frac{4}{5} \frac{\mu^{*}}{p^{*}}\left\langle\frac{\partial q_{i}^{*}}{\partial x_{j} *}\right\rangle+o\left(K^{2}\right) \tag{4.11}\\
& q_{i}{ }^{*}=-K \lambda^{*} \frac{\partial T^{*}}{\partial x_{i}{ }^{*}}, \quad \lambda=\frac{15}{4} \frac{k}{m} \mu \tag{4.12}
\end{align*}
$$

Отсюда следует, во-первых, что второй и третий члены (4.9) не гасят друг друга. Во-вторых, полученное выражение совпадает с тем, которое использовалось в $\left[{ }^{1-3}\right]$, в том числе и для температурных напряжений (второе слагаемое в (4.11)), вызывающих новый тип конвекции и другие предсказанные [3] явления. Наконец, в-третьих, представления (4.10), (4.11) противоречат одно другому. Это противоречие снимается, если принять, что барнеттовский отрезок ряда (3.1) сходится в асимптотическом смысле, т. е. $F=o\left(K^{2}\right)$, или последним свойством обладает хотя бы та часть F, которая дает вклад в $p_{i j}$. Тогда результаты прямого способа вычисліения тензора напряжений совпадут с (4.11) с погрешностью $o\left(K^{2}\right)$.

Далее, в случае B снова находим такое же выражение для $p_{i j}$.
Наконец, случай C. Чтобы здесь получить выражения для $p_{i j}$ и q_{i}, введем предположение, обычно используемое в методе Максвелла при выводе навье-стоксовских выражений для переносных свойств: предположим, что существуют моменты третьего порядка от интеграла столкновений и моменты четвертого порядка от функции распределения

$$
\begin{equation*}
M_{i j k r}=M_{i j k r}^{(0)}(1+o(1)), \quad M_{i j k r}^{(0)}=\frac{k}{m} p_{*} T\left(\delta_{i j} \delta_{k r}+\delta_{i k} \delta_{j r}+\delta_{i r} \delta_{j k}\right) \tag{4.13}
\end{equation*}
$$

Здесь $M_{i j k r}^{(0)}$ рассчитывается по f_{0}, а p_{*} введена формулой (3.4). Тогда в уравнении (4.5) все выражения конечны, и применяем ту же методику,

что и при выводе (4.9) из (4.4). С учетом оценки $D \mathbf{u}^{*} / D t^{*}=O\left(K^{2}\right)$ видим, что $M_{i j k}^{*}=O(K)$, и окончательно получаем с погрешностью $o(1)$

$$
\frac{\partial}{\partial x_{r}} M_{i j k r}^{(0)}=-\frac{p}{6 \mu}\left(9 M_{i j k}-2 \delta_{j k} q_{i}-2 \delta_{i k} q_{j}-2 \delta_{i j} q_{k}\right)
$$

Отсюда следует

$$
\begin{equation*}
M_{i j k}=\frac{2}{5}\left(q_{i} \delta_{j k}+q_{j} \delta_{i k}+q_{k} \delta_{i j}\right) \tag{4.14}
\end{equation*}
$$

где q дается формулой (4.12). Подставляя (4.14) в (4.9), опять приходим к полученному ранее выражению (4.11) для $p_{i j}$ и к «снятию» указанного выше противоречия.

Таким образом, уб́еждаемся в справедливости принятого в [${ }^{1-3}$] приближения (4.11) для тензора напряжений и соответствующих ему уравнений медленных неизотермических течений. Предполагая решение уравнения Больцмана непрерывно зависящим от параметров межмолекулярного взаимодействия, можно сделать заключение, что полученные выводы гправедливы и для других законов межмолекулярного взаимодействия. Аналогичные рассмотрения легко проводятся и для смеси газов.
5. Таким образом, уравнения Навье - Стокса не являются общими уравнениями механики газа как сплошной среды, ибо в случае медленных неизотермических течений в уравнении импульса должны учитываться некоторые барнеттовские слагаемые тензора напряжений, содержащие вторые производные и произведения первых производных от температуры по координатам (а в смеси газов еще и производные от концентраций [${ }^{3}$]).

С учетом сказанного здесь будет дан вывод общей системы уравнений механики газа как сплошной среды. Кроме уравнений неразрывности и состояния она состоит из уравнений импульса и энергии, которые можно записать в виде

$$
\begin{align*}
& \rho \frac{D u_{i}}{D t}+\frac{\partial p}{\partial x_{i}}=2 \frac{\partial}{\partial x_{j}} \mu\left\langle\frac{\partial u_{i}}{\partial x_{j}}\right\rangle-\frac{\partial p_{i j}{ }^{T}}{\partial x_{j}} \tag{5.1}\\
& \frac{3}{2} \frac{D p}{D t}+\frac{5}{2} p \nabla \mathbf{u}-2 \mu\left\langle\frac{\partial u_{i}}{\partial x_{j}}\right\rangle \frac{\partial u_{i}}{\partial x_{j}}=\nabla^{2} \Omega \tag{5.2}\\
& \frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial x_{r}}, \quad \Omega=\int \lambda d T
\end{align*}
$$

Эта система уравнений отличается от навье-стоксовской последним слагаемым уравнения импульса (5.1), содержащим производные от температурных напряжений $p_{i j}{ }^{T}$. Последние удобно записать в виде

$$
\begin{equation*}
p_{i j}^{T}=\alpha_{1}\left\langle\frac{\partial^{2} \Omega}{\partial x_{i} \partial x_{j}}\right\rangle+\alpha_{2}\left\langle\frac{\partial T}{\partial x_{i}} \frac{\partial T}{\partial x_{j}}\right\rangle \tag{5.3}
\end{equation*}
$$

Тогда имеем

$$
\begin{equation*}
\frac{\partial p_{i j}^{T}}{\partial x_{j}}=\frac{\partial}{\partial x_{i}}\left[\alpha_{3}(\nabla T)^{2}+\alpha_{4} \nabla^{2} \Omega\right]+\alpha_{5}(\nabla T)^{2} \frac{\partial T}{\partial x_{i}}+\alpha_{6} \nabla^{2} \Omega \frac{\partial T}{\partial x_{i}} \tag{5.4}
\end{equation*}
$$

В формулах (5.3), (5.4) коэффициенты α_{n} - известные функции T, p_{*} (см. $\left[{ }^{1-3}\right]$, а также $\left[{ }^{17}\right]$, где выписаны уравнения МНТ для нестационарных течений многоатомного газа). Так как $p_{i j}{ }^{T}$ необходимо учитывать.

только в случае медленных течений, то для исключения старшей производной в (5.4) можно использовать упрощенное уравнение энергии (5.2) с учетом того, что $\nabla D p^{*} / D t^{*}=O\left(K^{2}\right)$. Тогда

$$
\frac{\partial}{\partial x_{i}} \alpha_{4} \nabla^{2} \Omega \approx \frac{5}{2} p_{*} \frac{\partial}{\partial x_{i}} \alpha_{4} \nabla \mathbf{u}
$$

и окончательно уравнение импульса принимает вид

$$
\begin{align*}
& \rho \frac{D u_{i}}{D t}+\frac{\partial}{\partial x_{i}}\left[p+\alpha_{3}(\nabla T)^{2}+\frac{5}{2} \alpha_{4} p_{*} \nabla \mathbf{u}\right]= \tag{5.5}\\
& =2 \frac{\partial}{\partial x_{j}} \mu\left\langle\frac{\partial u_{i}}{\partial x_{j}}\right\rangle-\alpha_{5}(\nabla T)^{2} \frac{\partial T}{\partial x_{i}}-\alpha_{6} \nabla^{2} \Omega \frac{\partial T}{\partial x_{i}}
\end{align*}
$$

В результате порядок полученной системы уравнений сохранения тот же, что и в приближении Навье - Стокса.

Авторы признательны Г. И. Петрову и Л. И. Седову за обсуждения, которые стимулировали проведение изложенного выше анализа.

Поступила 26 X 1978

ЛИТЕРАТУРА

1. Галкин В. С., Коган М. Н., Фридлендер О. Г. О некоторых кинетических әффектах в течениях сплошной среды. Изв. АН СССР, МЖГ, 1970, № 3.
2. Галкин В. С., Коган М. Н., Фридлендер О. Г. О свободной конвекции в газе в отсутствие внепних сил. Изв. АН СССР, МЖГГ, 1971, № 3.
3. Коган М. Н., Галкин В. С., Фридлендер О. Г. О напряжениях, возникающих в газах вследствие неоднородности температуры и концентраций. Новые типы свободной конвекдии. Усп. физ. н., 1976, т. 119, вып. 1.
4. Eggermont G. E. J., Hermans P. W., Hermans L. J. F., Knaap H. F. P., Beenakker J. J. M. Viscomagnetic heat flux experiments as a test of gas kinetic theory in the Burnett regime. Z. Naturforsch, 1978, Bd 33a, Nr 7.
5. Жданов В., Каган Ю., Сазыкин А. Влияние вязкого переноса импульса на дифо фузию в газовой смеси. ЖЭТФ, 1962, т. 42, № 3.
6. Sherman F. S., Talbot L. Experiment versus kinetic theory for rarefied gases. In: Rarefied Gas Dynamics. London, Pergamon Press, 1960. (Рус. перев.: Сравнение кинөтической теории с экспериментом для разреженных газов. В сб. Газодинамика разреженных газов. М., Изд-во иностр. лит., 1963.)
7. Grad H. Asymptotic equivalence of the Navier - Stokes and non-linear Boltzmann equations. Proc. Sympos. Appl. Math.. 1965, vol. 17
8. Ферцигер Дж., Капер Г. Математическая теория продессов переноса в газах. М., «Мир», 1976.
9. Чекмарев И. Б. К вопросу о решении уравнения Больцмана при малых числах Кнудсена. Письма в Ж. техн. физ., 1977, т. 3, вып. 11.
10. Галкин В. С. О статье И. Б. Чекмарева «К вопросу о решении уравнения Больцмана при малых числах Кнудсена». Ж. техн. физ., т. 48, № 11.
11. Cercignani C. On the general solution of the steady linearized Boltzmann equation. In: Rarefied Gas Dynamics, Proc. 9-th Internat. Sympos. Göttingen, 1974, vol. 1, Porz.-Wahn, 1974. (Рус. перев.: К общему решению стационарного линеаризованного уравнения Больцмана. В сб. «Динамика разреженных газов». М., «Мир», 1976.)
12. Grad H. Asymptotic of the Boltzmann equation. Phys. Fluids, 1963, vol. 6, No. 2. (Pyc. перев.: Асимптотическая теория уравнения Больцмана. В сб. «Некоторые вопросы кинетической теории газов». М., «Мир», 1965, стр. 7-37.)
13. Alsmeyer H. Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech., 1976, vol. 74, pt 3.
14. Simon C. E., Foch J. D. Numerical integration of the Burnett equations for shock structure in a Maxwell gas. In: Rarefied Gas Dynamics, N. Y., 1977, p. 493.
15. Галкин В. С. Вывод уравнений медленных течений смесей газов из уравнений Больцмана. Уч. зап. ЦАГИ, 1974, т. 5, № 4.
16. Коган М. Н. Динамика разреженного газа. М., «Наука», 1967.
17. Галкин В. С., Коган М. Н., Фридлендер О. Г. Термо- и диффузионно-стрессовые явления. Труды 4-й Всес. конф. по динамике разреженного газа и молекулярной газовой динамике. М., Изд. ЦАГИ, 1977.
