# ВЛИЯНИЕ ОСТАТОЧНОИ НАСЫЩЕННОСТИ НА РАСТЕКАНИЕ БУГРА ЖИДКОСТИ В ГАЗОВОМ ПЛАСТЕ 

И. Н. КОЧИНА, Н. Н. МИХАЙЛОВ, М. В. ФИЛИНОВ

(Москва)


#### Abstract

Рассмотрена задача о растекании бугра грунтовых вод в пласте с учетом частичного удержания воды в ранее занимаемом объеме. Ранее была рассмотрена задача о растекании бугра жидкости при условии полного замещения ее газом [1,2]. Эта задача сводится к уравнению Буссинеска, и если бугор жидкости в начальный момент сосредоточен в бесконечно малой окрестности оси симметрии, го задача автомодельна и получается решение типа мгновенного источника. Это решәние удовлетворяет соотнощению, выражающему сохранение полной массы жидкости во всем объеме пористой среды.

Исследуемая в данной работе задача сводится к репению уравнения Буссинеска с коэффидиентом, терпящим скачок в точке, где $\partial h / \partial t=0$ ( $h$ - высота бугра), условие же сохранения массы жидкости принимает неинтегрируемую форму, так как часть жидкости остается за пределами бугра. Показано, что уравнение Буссинеска с разрывным коәфффпиентом имеет асимптотическое автомодельное решение второго рода вида $h=A t^{-\alpha} f\left(r / B t^{\beta}\right)$, причем коәффициенты $\alpha$ и $\beta$ не определяются уже из соображений размерности, но находятся в проңессе решения. Получено численное решение неавтомодельной задачи, которое асимптотически приближается к автомодельному при больших значениях времени.


1. В газовом пласте бесконечной мощности с непроницаемым горизонтальным основанием в начальный момент имеется бугор жидкости, который затем растекается под действием силы тяжести по пласту, причем жидкость вытесняет газ не полностью, а занимает только долю объема пор, равную $\sigma$. Насыщенность жидкости в исходном бугре также составляет $\sigma$. В том объеме, который жидкость ранее занимала, также остается некоторое количество жидкости, остаточная насыщенность ее составляет $\sigma_{0}<\sigma$ (фиг. 1).

Будем считать, что в начальный момент жидкость занимала некоторый объем, симметричный относительно оси $z$.

Выведем дибференциальное уравнение для высоты бугра жидкости (напора) $h(r, t)$, считая движение осесимметричным. Заранее примем, что всюду, кроме точки $r=0$, производная $\partial h / \partial r<0$.

Принимая предпосылки гидравлической теории безнапорного движения [ ${ }^{3}$ ], т. е. пренебрегая вертикальной компонентой скорости фильтрации, и считая, что давление по высоте меняется по закону гидростатики, можно написать выражение расхода жидкости через цилиндрическую поверхность $2 \pi r h$ (фиг. 2)

$$
\begin{equation*}
q=-\frac{k}{י} \frac{\partial p}{\partial r} 2 \pi r h=-\frac{k}{\mu} \rho g \frac{\partial h}{\partial r} 2 \pi r h=-\frac{k \rho g \pi}{\mu} r \frac{\partial h^{2}}{\partial r} \tag{1.1}
\end{equation*}
$$

Здесь $k$-коэффициент проницаемости пористой среды, $\mu$ - вязкость жидкости, $\rho$ - плотность жидкости, давление $p=p_{0}+\rho g h, p_{0}$ - давление в газовом пласте.

Приравнивая изменение расхода жидкости изменению объема ее за счет уменьшения насыщенности от $\sigma$ до остаточной насыщенности $\sigma_{0}$, по-

лучим уравнение Буссинеска с коәффициентом $c_{1}=k \rho g\left[2 m \mu\left(\sigma-\sigma_{0}\right)\right]^{-1}$, которое имеет место только при условии $\partial h / \partial t<0$, т. е. для значений $r<r_{a}$.

Для значений $r>r_{a}(\partial h / \partial t>0)$ при повышении уровня жидкости насыщенность изменяется от нуля до $\sigma$; здесь дифференциальное уравнение Буссинеска имеет коэффициент $c_{2}=k \rho g(2 m \mu \sigma)^{-1}$.



Таким образом, задача о растекании бугра жидкости с учетом остаточной насыщенности свелась к решению уравнения Буссинеска с разрывным коэффициентом, зависящим от производной по времени, со следующими граничными условиями:

$$
\begin{array}{ll}
\frac{\partial h}{\partial t}=c_{1} \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h^{2}}{\partial r}\right), & \frac{\partial h}{\partial t}<0 \\
\frac{\partial h}{\partial t}=c_{2} \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h^{2}}{\partial r}\right), & \frac{\partial h}{\partial t}>0 \\
h(\infty, t)=0, \quad \frac{\partial h}{\partial r}=0 & (r=0) \tag{1.3}
\end{array}
$$

(последнее условие вытекает из симметрии решения относительно оси $z$ и отсутствия притока жидкости на оси симметрии) и с условиями непрерывности напора $h(r, t)$ и производной по $r$ в точке, где $\partial h / \partial t=0$. Непрерывность производной следует из постоянства коэффициента проницаемости пористой среды, разрывность коэффициента с связана с остаточной водонасыщенностью.

В начальный момент задается форма бугра.
Таким образом, существенное отличие этой задачи от решенной ранее $\left[{ }^{1,2}\right]$ заключается в том, что не выполняется условие сохранения массы жидкости в бугре, так как часть ее (с насыщенностью $\sigma_{0}$ ) остается за пределами бугра. Это создает дополнительную нелинейность, связанную с наличием в задаче подвижной границы, на которой претерпевает разрыв коэффициент в уравнении для напора.
2. Можно проверить непосредственно, что автомодельное решение задачи, представленной уравнением (1.2) с условиями (1.3) п с начальным условием типа мгновенного источника, отсутствует. Причиной этого является непостоянство (уменьшение) массы жидкости в растекающемся бугре.

Невырожденная задача, представленная уравнением (1.2), условиями (1.3), условием непрерывности функции $h$ и $\partial h^{2} / \partial r$ и начальным условием

$$
\begin{equation*}
h(r, 0)=\frac{M}{r^{2}} h_{0}\left(\frac{r}{r_{0}}\right) \tag{2.1}
\end{equation*}
$$

где $M$ - объем жидкости в начальный момент, была решена численно. При расчетах были взяты безразмерные переменные $H=h / h_{0}, R=r / r_{0}$, $T=2 c_{2} t h_{0} / r_{0}{ }^{2}$ п приняты начальные условия $H(R, 0)=1$ при $R \leqslant 1$, $H(R, 0)=0$ при $R>1$. В расчетах на ЭВМ была использована двухслойная схема.

В результате счета были получены зависимости $H(R, T)$ для разных .значений параметра $c_{2} / c_{1}$; на фиг. 3 приведены графики для случая


Фur. 3


Фиг. 4
$c_{2} / c_{1}=0,9$. Кривые $1-6$ соответствуют значениям $T=0.05,0.15,0.35,0.85$, 2.46, 10.06.

Кроме того, по данным расчетов построены графики зависимости $\ln H(0, T)$ от $\ln T$ и $\ln R_{\Phi}$ от $\ln T^{\prime}\left(R_{\Phi}-\right.$ безразмерная координата переднего фронта области, занятой жидкостью) (фиг. 4), как видно, для больших значений времени они прямолинейны, что говорит о степенной зависимости $H(0, T)$ и $R_{\oplus}$ от $T$.
3. Данные численного счета подсказывают, что существует асимптотическое автомодельное решение. Проводя анализ задачи аналогично тому, как это сделано в работах [4,5], приходим к заключению, что это решение должно иметь вид

$$
\begin{equation*}
h=A t^{-\alpha} f\left(\zeta, c_{2} / c_{1}\right), \quad \zeta=r /\left(B t^{\beta}\right) \tag{3.1}
\end{equation*}
$$

Выражение (3.1) представляет собой автомодельное решение второго рода, оно определяет асимптотику задачи Коши, представленной уравнением (1.2) с условиями (1.3), (2.1), а также с условиями непрерывности функции $h$ и производной $\partial h^{2} / \partial r$.

Параметры $\alpha$ и $\beta$ неизвестны и наряду с коәффициентами $A$ и $B$ подлежат определению в ходе решения задачи.

Подставив $h(r, t)$ в виде (3.1) в первое из уравнений (1.2), получим

$$
\begin{equation*}
\frac{d^{2} f^{2}}{d \zeta^{2}}+\frac{1}{\zeta} \frac{d f^{2}}{d \zeta}+\frac{B^{2}}{A c_{1}} t^{\alpha+2 \beta-1}\left(\alpha f+\beta \zeta \frac{d f}{d \zeta}\right)=0 \tag{3.2}
\end{equation*}
$$

Как видно, для существования автомодельного решения необходимо, чтобы выполнялось условие $\alpha+2 \beta=1$.

Переменную $\zeta$ можно выбирать с точностью до постоянного множителя $B$. Выберем его так, чтобы $A=B^{2} / c_{1}$, тогда уравнение (3.2) и второе из уравнений (1.2) приведутся к виду

$$
\begin{align*}
& \frac{d^{2} f^{2}}{d \zeta^{2}}+\frac{1}{\zeta} \frac{d f^{2}}{d \zeta}+\alpha f+\beta \zeta \frac{d f}{d \zeta}=0, \quad \alpha f+\beta \zeta \frac{d f}{d \zeta}>0 \\
& \frac{d^{2} f^{2}}{d \zeta^{2}}+\frac{1}{\zeta} \frac{d f^{2}}{d \zeta}+\frac{c_{1}}{c_{2}}\left(\alpha f+\beta \zeta \frac{d f}{d \xi}\right)=0, \quad \alpha f+\beta \zeta \frac{d f}{d \xi}<0 \tag{3.3}
\end{align*}
$$

Кроме того, из условий (1.3) имеем

$$
\begin{equation*}
f^{\prime}(0)=0, \quad f(\infty)=0 \tag{3.4}
\end{equation*}
$$

и функция $f\left(\zeta, c_{2} / c_{1}\right)$ непрерывна всюду вместе со своей производной.
Решение уравнений (3.3) при условиях (3.4) может быть получено только с точностью до постоянной, так как не может быть использован закон сохранения массы, который для данной задачи принимает неинтегрируемую форму.



Уравнения (3.3) решались численно, причем принималось (для нормировки), что $f(1)=0$, при әтом из второго уравнения (3.3) следует, что $f^{\prime}(1)=-c_{1} \beta / 2 c_{2}$.

Значения $\beta$ определялись методом половинного деления. Искомое значение $\beta$ соответствовало условию $\left|f^{\prime}(0)-0\right|<\varepsilon$, где $\varepsilon$ - точность расчетов. Графики зависимостей $f\left(\zeta, c_{2} / c_{1}\right)$ и $\beta\left(c_{2} / c_{1}\right)$ приведены на фиг. 5 и 6. На фиг. 5 кривые $1-4$ построены для значений $c_{2} / c_{1}=0.2,0.4,0.7,0.98$ соответственно.

Для определения напора по формуле (3.1) нужно знать константу $A$, которая может быть найдена путем склейки автомодельного решения (3.1) с неавтомодельным. Из выражения для $\zeta$ при условии $f(1)=0$ определяется координата переднего фронта движения жидкости

$$
\begin{equation*}
r_{\Phi}=\zeta_{\Phi} B t^{\beta}=B t^{\beta}=\sqrt{A c_{1}} t^{\beta} \tag{3.5}
\end{equation*}
$$

Сопоставим результаты расчетов неавтомодельного решения и асимптотического автомодельного (3.1). Автомодельное решение в безразмерной форме и координата переднего фронта имеют вид

$$
\begin{align*}
& H(R, T)=A_{1} T^{-\alpha} f\left(\zeta, c_{2} / c_{1}\right), \quad A_{1}=A\left(2 c_{2}\right)^{\alpha} / h_{0}^{\alpha+1}  \tag{3.6}\\
& R_{\Phi}=B_{1} T^{\beta}, \quad B_{1}=\left(A_{1} c_{1} / 2 c_{2}\right)^{1 / 2}
\end{align*}
$$

В логарифмических координатах получим

$$
\begin{equation*}
\ln H(0, T)=-\alpha \ln T+\ln \left[A_{1} f\left(0, c_{2} / c_{1}\right)\right] \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\ln R_{\Phi}=\beta \ln T+\ln B_{1} \tag{3.9}
\end{equation*}
$$

т. е. прямые линии с угловыми коәффидиентами $-\alpha$ и $\beta$ и отрезками, отсекаемыми на осях ординат, равными $\ln \left[A_{1} f\left(0, c_{2} / c_{1}\right)\right]$ п $\ln B_{1}$ соответственно.

Для случая $c_{2} / c_{1}=0.9$ из графика фиг. 6 следует, что $\beta=0.243$ и тогда $\alpha=1-2 \beta=0.514$.

Для неавтомодельного решения угловые коэффициенты прямых, представленных на фиг. 4, равны соответственно -0.497 и 0.238 , так что с точностью до $3 \%$ их можно считать равными - $\alpha$ и $\beta$. Следовательно, при больших значениях времени неавтомодельное решение выходит на автомодельный режим и определяется формулой (3.6), а графики на фиг. 4 удовлетворяют уравнениям (3.8) и (3.9). Отрезки, отсекаемые прямыми, представленными на фиг. 4 , на осях ординат, и равные $\ln \left[A_{1} f\left(0, c_{2} / c_{1}\right)\right]$ и $\ln B_{1}$, позволяют определить значения $A_{1}$ и $B_{1}$ и проверить выполнение зависимости $A_{1}=2 B_{1}{ }^{2} c_{2} / c_{1}$. Для $c_{2} / c_{1}=0.9$ имеем из графика фиг. 5 $f(0,0.9)=0.0645$ и соотношение между $A_{1}$ и $B_{1}$ оказывается выполненным с точностью до $6 \%$.

Авторы благодарны Г. И. Баренблатту за ценные указания в работе и В. Ф. Баклановской за помощь при счете.

Поступила 30 V 1978

## ЛИТЕРАТУРА

1. Баренблатт Г. И., Ентов В. М., Рыжик В. М. Теория нестационарной фильтрации жидкости и газа. М., «Недра», 1972.
2. Полубаринова-Кочина П. Я. Теория движения грувтовых вод. М., «Наука», 1977.
3. Чарный И. А. Подземная гидрогазодинамика. М., Гостоптехиздат, 1963.
4. Баренблатт Г. И. Подобие, автомодельность, промежуточная асимптотика. Л., Гидрометеоиздат, 1978.
5. Баренблатr Г. И., Сивашинский $Г$. И. Автомодельные решения второго рода в нелинейной фильтрации. ПММ, 1969, т. 33, вып. 5.
