О ШНЕКОВОМ ТЕЧЕНИИ ЖИДКОСТИ В ЦИЛИНДРИЧЕСКОИ ТРУБЕ

Н. А. СЈЕЗКИН

(Mосква)
Рассматривается установившееся течение вязкой несжимаемой жидкости с винтовыми линиями тока в цилиндрической бесконечной трубе, внутри которой вращается щнек. Дан вывод обобщенных линеаризированных уравнений Озеена, один класс точных решений которых совпадает с соответствующим классом точных решений полных уравнений Навье - Стокса.

1. Если взять полные уравнения Навье - Стокса в цилиндрических координатах для установившегося движения вязкой несжимаемой жидкости с постоянным коэффициентом вязкости, то для одного класса хорошо известных точных решений этих уравнений имеем следующие выражения для скоростей v_{r}, v_{α}, v_{z} и давления p :

$$
\begin{align*}
& v_{r}=0, \quad v_{\alpha}=\frac{A_{2}}{r}+B_{2} r \\
& v_{z}=\frac{1}{4 \mu} \frac{\partial p_{1}}{\partial z} r^{2}+A_{3} \ln r+B_{3} \tag{1.1}\\
& p=\frac{\partial p_{1}}{\partial z} z+\rho \int v_{\alpha}^{2} \frac{d r}{r}+D
\end{align*}
$$

Здесь A_{k}, B_{k} и D - постоянные величины, определяемые из соответствующих граничных условий. В классе решений (1.1) содержатся чисто пря-молинейно-параллельные течения, круговые течения по концентрическим окружностям и винтовые течения между двумя концентрическими цилиндрами с расходами, не зависящими от угловой скорости вращения одного из цилиндров. Покажем, что решения (1.1) можно использовать для приближенного описания течения с винтовыми линиями тока для случая, когда жидкость с внешней стороны ограничена поверхностью неподвижного цилиндра, а с внутренней - винтовой поверхностью вращающегося шнека. Такого рода течение естественно назвать шнековым, так как термин «винтовое» использован Громекой для наименования течений жидкости для случая, когда вектор скорости частиц совшадает с вектором вихря этих же частиц.

Пусть поверхность вращающегося шнека будет представлена уравнениями $x=r \cos \alpha, y=r \sin \alpha, z=h(r) \alpha$, где $h(r)$ - переменный шаг винтовой поверхности. Обозначим цилиндрические координаты частиц жидкости, прилишших к поверхности шнеқа, теми же буквами, но со звездочкой вверху; тогда будем иметь $z^{*}=h(r) \alpha^{*}$. Дифференцируя это равенство по времени и вводя обозначения скоростей, получим

$$
\begin{equation*}
v_{z}^{*}=\frac{d h}{d r} \alpha^{*} v_{r}^{*}+\frac{h}{r^{*}} v_{\alpha}^{*} \tag{1.2}
\end{equation*}
$$

Таким образом, если поверхность шнека отличается от прямого гелиокоида ($h=$ const), то скорость $v_{z}{ }^{*}$ будет линейно зависеть от скоростей v_{r}^{*} и v_{a}^{*}, а коәффициенты будут зависеть не только от r^{*}, но и от угла α^{*}. Но если первое слагаемое в (1.2) будет малым по сравнению со вторым, то с некоторым приближением можно положить

$$
\begin{equation*}
v_{z}^{*}=\frac{h}{r^{*}} v_{a}^{*} \tag{1.3}
\end{equation*}
$$

Предположим теперь, что соотношения $z^{*}=h(r) \alpha^{*}$ (1.3) выполняғлтся не только для частиц, прилипших к поверхности шнека, но и для всех остальных частиц жидкости; тогда уравнение несжимаемости можно представить в одном из двух следующих видов:

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r v_{r}\right)+2 r \frac{\partial v_{z}}{\partial z}=0, \quad \frac{\partial}{\partial r}\left(r v_{r}\right)+2 \frac{\partial v_{\alpha}}{\partial \alpha}=0 \tag{1.4}
\end{equation*}
$$

Принимая для v_{r} выражение (1.1), из равенств (1.4) п (1.3) получим, что скорости v_{α} п v_{z} не будут зависеть ни от z, ни от α, а тогда из полных уравнений Навье - Стокса для несжимаемой жидкости можно получить только остальные выражения (1.1) для скоростей v_{α} и v_{z} и давления p. Таким образом, действительно при допущении справедливости соотношения (1.3) для всех частиц жидкости для описания соответственного шнекового течения можно использовать равенства (1.1); вопрос только в том, как определить произвольные постоянные, входящие в (1.1).

Обозначим радиус неподвижного цилиндра, ось которого совпадает с осью вращения шнека, через b. При выполнении условия прилинания частиц жидкости к поверхности этого цилиндра из равенств (1.1) получим

$$
\begin{align*}
& v_{r}=0, \quad v_{\alpha}=\frac{A_{2}}{b^{2} r}\left(b^{2}-r^{2}\right) \\
& v_{z}=-\frac{1}{4 \mu} \frac{\partial p_{1}}{\partial z}\left(b^{2}-r^{2}\right)-A_{3} \ln \frac{b}{r} \tag{1.5}\\
& p=D+\frac{\partial p_{1}}{\partial z} z+\frac{1}{2} \rho \frac{A_{2}^{2}}{b^{4}}\left(r^{2}-\frac{b^{4}}{r^{2}}-4 b^{2} \ln r\right) \\
& \frac{v_{z}}{v_{\alpha}}=-\frac{1}{A_{2}}\left(\frac{1}{4 \mu} b^{2} r \frac{\partial p_{1}}{\partial z}+A_{3} \frac{b^{2} r}{b^{2}-r^{2}} \ln \frac{b}{r}\right) \\
& \left(\frac{v_{z}}{v_{\alpha}}\right)_{r \rightarrow b}=-\frac{b}{2 A_{2}}\left(A_{3}+\frac{b^{2}}{2 \mu} \frac{\partial p_{1}}{\partial z}\right)
\end{align*}
$$

Из выражения (1.5) для давления следует, что при уменьшении r давление может стать отрицательным, что должно быть исключено. Обозначим через a то значение r, при котором давление окажется равным критическому давлению p_{k}, допускаемому свойством рассматриваемой несжимаемой жидкости. Если обозначить статическое давление в начальном сечении цилиндра при $r=b$ через p_{0}, то будем иметь

$$
\begin{align*}
& p_{0}=D-2 A_{2}{ }^{2} \frac{\rho}{b^{2}} \ln b \\
& p_{k}=D+\frac{\partial p_{1}}{\partial z} l+\frac{1}{2} \rho \frac{A_{2}{ }^{2}}{a^{2} b^{4}}\left(a^{4}-b^{4}-4 a^{2} b^{2} \ln a\right) \tag{1.6}
\end{align*}
$$

где l - протяженность внешнего цилиндра, связанная с перепадом статического давления от p_{0} до некоторого значения p_{a} соотношением

$$
\begin{equation*}
\frac{\partial p_{1}}{\partial z}=-\frac{p_{0}-p_{a}}{l} \tag{1.7}
\end{equation*}
$$

Из равенств (1.6) п (1.7) можно определить значения D п a, если будут заданы p_{0}, p_{a}, p_{k} и A_{2}. Значение же постоянного A_{2} можно определить из кинематического условия задания угловой скорости шнека ω; тогда из выражения (1.5) для линейной скорости v_{α} точек шнека, расположенных на поверхности с критическим давлением p_{k}, получим

$$
\begin{equation*}
A_{2}=\omega \frac{b^{2} a^{2}}{b^{2}-a^{2}} \tag{1.8}
\end{equation*}
$$

Чтобы получить значение постоянного A_{3}, можно использовать условие (1.3) для значения r, близкого к b, и при этом можно воспользоваться последним равенством (1.5); тогда получим

$$
\begin{equation*}
A_{3}=-\frac{1}{2 \mu} b^{2} \frac{\partial p_{1}}{\partial z}-2 \omega \frac{a^{2} h_{b}}{b^{2}-a^{2}} \tag{1.9}
\end{equation*}
$$

где h_{b} - шаг винтовой поверхности шнека вблизи поверхности внешнего неподвижного цилиндра.

Таким образом, при выполнении всех перечисленных выше условий получим следующее выражение для продольной скорости:

$$
\begin{equation*}
v_{z}=\frac{1}{4 \mu l}\left(p_{0}-p_{a}\right)\left(b^{2}-r^{2}-2 b^{2} \ln \frac{b}{r}\right)+2 \omega \frac{a^{2} h_{b}}{b^{2}-a^{2}} \ln \frac{b}{r} \tag{1.10}
\end{equation*}
$$

Так как равенства (1.5) не пригодны для области течения, в которой давление ниже критического, то при подсчете объемной величины расхода Q необходимо за нижний предел брать значение $r=a$, т. е.

$$
\begin{equation*}
Q=2 \pi \int_{a}^{b} v_{z} r d r \tag{1.11}
\end{equation*}
$$

Если ввести обозначение $x=a^{2} / b^{2}$, то из равенств (1.6) и (1.7) можно получить следующее уравнение для заранее неизвестной величины x :

$$
\frac{x}{(1-x)^{2}}\left(1-x^{2}+2 x \ln x\right)=\frac{2}{\rho b^{2} \omega^{2}}\left(p_{a}-p_{k}\right)
$$

Тогда выражение объемной величины расхода Q, полученное из (1.10) и (1.11), можно представить в виде

$$
\begin{equation*}
Q=\frac{\pi}{32 \mu} \frac{p_{0}-p_{a}}{l} b^{4}\left(x^{2}+8 x \ln x-1\right)+\pi \omega h_{b} b^{2} \frac{x}{1-x}\left(1-x^{2}+2 x \ln x\right) \tag{1.12}
\end{equation*}
$$

Известно, что при шнековом течении жидкости объемный расход существенно зависит от угловой скорости вращения шнека и шага винтовой поверхности шнека. Полученная формула (1.12) по крайней мере качественно согласуется с этим известным из практики применения шнековых сооружений результатом. Однако следует иметь в виду, что зависимость Q от угловой скорости вращения шнека не является линейной именно из-за того, что безразмерная величина x (1.12) в свою очередь сложным образом зависит от квадрата угловой скорости вращения шнека, радиуса внешнего цилиндра и давления p_{a} в конечном сечении шнека.

Как уже сказано, полученные выше формулы приближенно описывают шнековое течение в цилиндрической трубе при выполнении гипотезы (1.3) для всех частиц жидкости, т. е. при выполнении гипотезы, имеющей вид $v_{z} / v_{\alpha}=h / r$. Для прямого гелиокоида шаг винта h постоянный. При приближенном подходе шнек не оказался прямым гелиокоидом, так как из равенств $(1.5),(1.8), 1.9)$ и $x=a^{2} / b^{2}$ даже при отсутствии перепада давления ($\partial p_{1} / \partial z=0$) получим

$$
\left(\frac{v_{z}}{v_{\alpha}}\right)_{a}=-\frac{h_{b}}{b} \frac{\sqrt{x} \ln x}{1-x}
$$

т. е. шаг винтовой поверхности оказался непостоянным. Например, при $x=0.5$ шаг винтовой поверхности полученного шнека при $r=a$ будет отличаться от шага винтовой поверхности при $r=b$ не более чем на 20%. Это и значит, что допущение (1.3) может вносить ошибку тоже порядка 20%.
2. Весьма вероятно, что переменность шага винтовой поверхности шнека, полученная в п. 1 , обусловлена тем, что были пспользованы лишь приближенные решения (1.1) уравнений Навье - Стокса, в которых исключалйсь зависимости скоростей и давлений от двух переменных z и α. При подключении зависимостей всех величин от z и α уравнения Навье Стокса становятся нелинейными и использование их для изучения шнекового течения в трубе без использования вычислительных машин становится невозможным. В таком случае представляется полезным воспользоваться той идеей, которая в последнее время стала применяться в кинетической теории газов, когда нелинейный оператор столкновений в уравнении Больцмана стал заменяться линейным оператором, но таким, который сохраняет основные особенности нелинейного оператора столкновений. Если придерживаться этой идеи, то можно нелинейные слагаемые в полных уравнениях Навье - Стокса для установившегося течения несжимаемой жидкости в цилиндрических координатах, конечно приближенно, заменить группой соответственных линейных слагаемых с переменными коэффициентами, но такой группой, при которой полученные линеаризированные уравнения сохраняли бы в числе своих полных решений п точные ренеения полных уравнений Навье - Стокса, представляемые равенствами (1.1). Следует заметить, что эта идея впервые практически и была применена Озееном, с той только разницей, что сохранялся только самый простой интеграл уравнений Навье - Стокса, а пменно представляющий собой прямолинейно-параллельное течение жидкости с постоянной скоростью. При требовании сохранения всех интегралов (1.1) нолных уравнений Навье - Стокса полученные приближенные линеаризированные уравнения можно назвать обобщенными уравнениями Озеена. Для получения такого рода уравнений надо в полных уравнениях Навье - Стокса положить

$$
\begin{align*}
& v_{r}=v_{r}^{\prime} \\
& v_{\alpha}=\frac{A_{2}}{r}+B_{2} r+v_{\alpha}^{\prime}=V(r)+v_{\alpha}^{\prime} \tag{2.1}\\
& v_{z}=\frac{1}{4 \mu} \frac{\partial p_{1}}{\partial z} r^{2}+A_{3} \ln r+B_{3}+v_{z}^{\prime}=W(r)+v_{z}^{\prime}
\end{align*}
$$

пренебречь слагаемыми с произведениями возмущений всех скоростей п вернуться к прежним обозначениям, полагая $v_{r}^{\prime}=v_{r}, v_{\alpha}^{\prime}=v_{\alpha}-V, v_{z}^{\prime}=$ $=v_{z}-W$. Этим способом получим следующие обобщенные уравнения Озеена:

$$
\begin{align*}
& \frac{V}{r} \frac{\partial v_{r}}{\partial \alpha}+W \frac{\partial v_{r}}{\partial z}+\frac{V}{r}\left(V-2 v_{\alpha}\right)=-\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left(\Delta v_{r}-\frac{v_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\alpha}}{\partial \alpha}\right) . \\
& \quad v_{r} \frac{\partial V}{\partial r}+\frac{V}{r} \frac{\partial v_{\alpha}}{\partial \alpha}+W \frac{\partial v_{\alpha}}{\partial z}+\frac{1}{r} V v_{r}= \tag{2.2}\\
& \quad=-\frac{1}{\rho r} \frac{\partial p}{\partial \alpha}+v\left(\Delta v_{\alpha}-\frac{v_{\alpha}}{r^{2}}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \alpha}\right) \\
& v_{r} \frac{\partial W}{\partial r}+\frac{V}{r} \frac{\partial v_{z}}{\partial \alpha}+W \frac{\partial v_{z}}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+v \Delta v_{z} \\
& \frac{\partial\left(r v_{r}\right)}{\partial r}+r \frac{\partial v_{z}}{\partial z}+\frac{\partial v_{\alpha}}{\partial \alpha}=0
\end{align*}
$$

Легко проверить, что в числе точных решений системы уравнений (2.2) будут находиться и решения вида

$$
\begin{aligned}
& v_{r}=0, \quad v_{\alpha}=V(r), \quad v_{z}=W(r) \\
& p=\frac{\partial p_{1}}{\partial z} z+\rho \int V^{2} \frac{\partial r}{r}+D
\end{aligned}
$$

Полученные обобщенные уравнения Озеена (2.2) можно использовать не только для уточнения полученного в п. 1 приближенного решения задачи о щнековом течении в цилиндрической трубе в сторону учета некоторых особенностей у торцовых сечений трубы, но и для изучения развития закрученного течения в трубе без наличия шнека.

Поступила 15 XI 1978

