АСИМПТОТИЧЕСКАЯ ТЕОРИЯ НЕСТАЦИОНАРНОГО ОТРЫВА

ВИК. В. СЫЧЕВ

(Москва)

На основании асимптотического анализа уравнений Навье - Стокса при больтих числах Рейнольдса исследуется явление нестационарного отрыва ламинарного пограничного слоя в несжимаемой жидкости. Рассматривается случай, когда точка отрыва движется вверх по потоку. Показано, что при некоторых ограничениях на ускорение, с которым происходит движение точки отрыва, локальное решение зависит от времени как от параметра. Как и в стационарном случае, отрыв потока происходит самоиндуцированно под действием большого локального градиента давления. Однако существенное отличие состоит в том, что механизм нестационарного отрыва является «вөвязким».

Исследования явления ламинарного отрыва в плоском стационарном потоке вязкой несжимаемой жидкости при больших числах Рейнольдса (R) привели к построению ряда теорий. Это прежде всего теория самоиндуцированного отрыва от гладкой поверхности [${ }^{1,}{ }^{2}$], теория отрыва от точек излома [${ }^{3}$], теория вязкого обтекания тонкого профиля [${ }^{4},{ }^{5}$] и делый ряд других результатов (см. [$\left.{ }^{6,7}{ }^{7}\right]$). Рациональные решения такого типа, соответствующие отрыву пограничного слоя в сверхзвуковом потоке, были получены в [${ }^{8-10}$]. В отличие от традиционного подхода, основанного на теории пограничного слоя Прандтля, обязательным элементом здесь явилась не особенность Гольдштейна [${ }^{11}$], а взаимодействие внешнего потенциального потока с течением в пограничном слое. Представляет интерес рассмотреть с этих позиций явление нестационарного отрыва или стационарного отрыва на подвижной поверхности. Между этими явлениями имеется известная аналогия. Она основана на соображениях о переходе от системы координат, связанной с точкой отрыва, движущейся относительно неподвижной поверхности, к системе координат, связанной с неподвижной точкой отрыва на подвижной поверхности. (Изложение этих вопросов можно найти в обзорах [${ }^{12,}{ }^{13}$]. Более подробно это будет рассмотрено в п. 6 данной работы.)

Многочисленные попытки рассматривать эти явления в рамках теории пограничного слоя, т. е. при заданном положительном градиенте давления, свидетельствуют о существовании особенностей [${ }^{12-15}$], аналогичных особенности Гольдштейна. Так, согласно определению Мура - Ротта - Сирса (см., например, $\left[{ }^{\left.12,{ }^{13}\right] \text {), в точке отрыва плоского стационарного погранич }}\right.$ ного слоя на подвижной поверхности должно происходить одновременное обращение в нуль величин скорости и трения. Причем точка эта является особой и, вообще говоря, в отличие от особенности Гольдштейна располагается не на поверхности тела.

Целью данной работы является исследование методом сращиваемых асимптотических разложений (см. [${ }^{16}$]) уравнений Навье - Стокса при $R \rightarrow \infty$ для плоского течения в окрестности точки отрыва, в случае когда она движется вверх по потоку. В силу упомянутой выше аналогии эта задача соответствует задаче о стационарном отрыве на поверхности, которая движется вниз по потоку.

1. Рассмотрим двумерное стационарное течение вязкой несжимаемой жидкости на поверхности, которая движется вниз по потоку. Будем считать, что число Рейнольдса стремится к бесконечности и скорость поверхности тела постоянна относительно системы координат x, y (фиг. 1). Ясно, что если вязкий пограничный слой попадает в область возрастающего (вниз по потоку) давления, то жидкость в этом слое будет тормозиться. Поскольку поверхность тела движется вниз по потоку, то, начиная с некоторого значения $x=x_{0}<0$, профиль скорости вдоль каждой линии $x=$ const будет достигать минимума в некоторой точке, не лежащей на по-

Фиг. 1

Фиг. 2

верхности тела (фиг. 1). По мере приближения к точке отрыва ($x=0$) минимальное значение продольной составляющей вектора скорости стремится к нулю.

Перейдем теперь к построению локального асимптотического решения уравнений Навье - Стокса в окрестности точки отрыва. Прежде всего сделаем предположение относительно предельного состояния течения при $R \rightarrow \infty$ [7]. Будем искать предельное состояние в классе отрывных течений идеальной жидкости со свободными линиями тока. Все существующие модели течений идеальной жидкости со свободными линиями тока вне зависимости от формы тела и предлагаемой схемы течения вниз по потоку приводят (см., нашример, [${ }^{17}$]) к следующему выражению для давления на нулевой линии тока в окрестности точки отрыва (область 1 , фиг. 2):

$$
p_{1}(x)= \begin{cases}p_{00}-2 k(-x)^{1 / 2}-{ }^{16} / 3 k^{2}(-x)+O\left[(-x)^{3 / 2}\right] & (x<0) \tag{1.1}\\ p_{00}+O\left(x^{\beta}\right), \quad \beta>1 & (x>0)\end{cases}
$$

Форма нулевой линии тока при этом имеет вид

$$
\begin{equation*}
y=4 / 3 k x^{3 / 2}+O\left(x^{5 / 2}\right) \tag{1.2}
\end{equation*}
$$

Здесь $k>0, k=O(1)$ - некоторая постоянная, значение которой определяется глобальным решением задачи. Координата x отсчитывается вдоль поверхности тела, так что в точке отрыва $x=0, y=y_{0}(R)$, где $y_{0}(R) \rightarrow$ $\rightarrow+0$ при $R \rightarrow \infty$. Все размеры отнесены к характерной длине обтекаемого тела L, компоненты вектора скорости - к их предельному значению на свободной линии тока U_{00}; приращение давления $p-p_{\infty}$ отнесено к $\rho U_{00}{ }^{2}$, где ρ - плотность жидкости. Через p_{00} обозначено безразмерное предельное значение давления на свободной линии тока. Число Рейнольдса $R=$ $=U_{00} L / v$.

Уравнения пограничного слоя, описывающие течение перед областью отрыва, и соответствующие краевые условия запишем в форме Мизеса

$$
\begin{aligned}
& u \frac{\partial u}{\partial x}+\frac{d p}{d x}=u \frac{\partial}{\partial \Psi}\left(u \frac{\partial u}{\partial \Psi}\right), \quad u \frac{\partial Y}{\partial \Psi}=1 \\
& u \frac{\partial Y}{\partial x}=V \\
& u=U_{w}, \quad Y=V=0 \quad(\Psi=0) \\
& u \rightarrow U_{1}(x) \quad(\Psi \rightarrow \infty), \quad x \leqslant 0, \quad \Psi \geqslant 0
\end{aligned}
$$

Здесь $\Psi=R^{1 / 2} \psi$ - безразмерная функция тока, $Y=R^{1 / 2} y, V=R^{1 / 2} v$ и постоянная порядка единицы $U_{w}>0$ - скорость поверхности тела. Изменение давления описывается выражением (1.1) и в соответствии с этим $U_{1}(x)=$ $=1+2 k(-x)^{1 / 2}+O[(-x)]$ при $x \rightarrow-0$.

В силу того что градиент давления ведет себя особым образом при $x \rightarrow-0$, течение в основной части пограничного слоя (область 2) становится локально-невязким и соответствующее решение может быть представлено в виде

$$
\begin{align*}
& u=U_{2}(\Psi)+(-x)^{1 / 2} 2 k U_{2}^{-1}(\Psi)+O[(-x)] \tag{1.4}\\
& Y=Y_{2}(\Psi)+G_{2}(x)+O\left[(-x)^{1 / 2}\right] \\
& Y_{2}=\int U_{2}^{-1}(\Psi) d \Psi, \quad U_{2}(\Psi) \rightarrow 1 \quad(\Psi \rightarrow \infty)
\end{align*}
$$

Здесь $G_{2}(x)$ - некоторая (пока произвольная) функция. (Здесь и всюду в дальнейшем выражения для функции $V(x, \Psi)$, которые находятся непосредственно из (1.3), не выписываются.)

Предотрывный профиль продольной составляющей вектора скорости чмеет точку минимума, которая совпадает с точкой нулевого трения. Поэтому предположим, что при $x \rightarrow-0$ вдоль некоторой линии тока ($\Psi=\Psi{ }_{s}>$ >0) трение обращается в нуль. Пусть далее в области 2 при $\Psi \rightarrow+\Psi_{s}$, $U_{2}(\Psi)=a_{0}\left(\Psi-\Psi_{s}\right)^{\alpha}+o\left[\left(\Psi-\Psi_{s}\right)^{\alpha}\right]$. Здесь a_{0} п α - положительные постоянные. Из первого выражения в (1.4) следует, что второй член становится порядка первого в области, где $\Psi-\Psi_{s}=0\left[(-x)^{1 / \kappa x}\right]$. В этой области (область 3) в силу разложения (1.1) решение при $x \rightarrow-0$ следует искать в виде

$$
\begin{align*}
& u=(-x)^{1 / 4} f_{3}\left(\eta_{3}\right)+O\left[(-x)^{\text {s/4 }}\right]+O\left[(-x)^{(3 \alpha-1) / 2 \alpha}\right] \tag{1.5}\\
& \eta_{3}=\left(\Psi-\Psi_{s}\right)(-x)^{-1 / 4 \alpha}
\end{align*}
$$

Будем считать, что течение в области 3 , так же как и в области 2 , является локально невязким при $x \rightarrow-0$. Это соответствует значениям $\alpha>2 / 5$. В результате подстановки (1.5) в (1.3) и последующего интегрирования получим

$$
\begin{equation*}
f_{3}\left(\eta_{3}\right)=\left(a_{1} \eta_{3}{ }^{2 \alpha}+4 k\right)^{1 / 2} \tag{1.6}
\end{equation*}
$$

Из сращивания с решением в области 2 находим, что $a_{1}=a_{0}{ }^{2}$. Для удовлетворения условию равенства нулю трения при $\Psi=\Psi_{s}$ необходимо, вообще говоря, введение дополнительной области, где было бы существенно действие сил вязкости. Решение в ней (область $3 a$) в соответствии с (1.1) будем искать в виде

$$
u=(-x)^{1 / 4} g_{0}(\zeta)+(-x)^{\beta_{1}} g_{1}(\zeta)+(-x)^{\beta_{2}} g_{2}(\zeta)+(-x)^{\beta_{3}} g_{3}(\zeta)+O\left[(-x)^{5 / 4}\right]
$$

$$
\begin{equation*}
\xi=\left(\Psi-\Psi_{8}\right)(-x)^{-5 / 8}, \quad \beta_{1} \in(1 / 4,3 / 4), \quad \beta_{2}=3 / 4, \quad \beta_{3} \in(3 / 4,5 / 4) \tag{1.7}
\end{equation*}
$$

В результате подстановки (1.7) в (1.3) для функции $g_{0}(\zeta)$ получаем следующую задачу:

$$
\left(g_{0}{ }^{\prime} g_{0}\right)^{\prime} g_{0}-5 / 8 g_{0}^{\prime} g_{0} \zeta+1 / 4 g_{0}^{2}-k=0, \quad g_{0}^{\prime}(0)=0
$$

и из условия сращивания с решением в области 3 следует, что $g_{0}(\zeta)$ не содержит әкспоненциально возрастающего члена при $\zeta \rightarrow \infty$. Решение этой задачи есть $g_{0}(\zeta)=2 k^{1 / 2}$. Для функций $g_{i}(\zeta)(i=1,2,3)$ получаем

$$
\begin{equation*}
g_{i}^{\prime \prime}-\frac{5}{16 k^{1 / 2}} g_{i}^{\prime} \zeta+\frac{\left(4 \beta_{i}+1\right)}{8 k^{1 / 2}} g_{i}=h_{i}, \quad g_{i}^{\prime}(0)=0 \tag{1.8}
\end{equation*}
$$

здесь $h_{1}=h_{3}=0, h_{2}=4 k / 3$ п $g_{i}(\zeta)$ также не должны содержать экспоненциально возрастающих членов при $\zeta \rightarrow \infty$. Однако решение этой задачи для однородной части уравнения (1.8) (уравнение Вебера) в общем случае есть тождественный нуль и ненулевое решение существует, если только $\beta_{i}=1$. Следовательно, $g_{1}(\zeta) \equiv 0, g_{2}(\zeta)=8 k^{1 / 2} / 3, g_{3}(\zeta)=a_{2}\left({ }^{1} /{ }_{4} k^{-1 / 2} \zeta^{2}-4 / 5\right)$. Сращивание полученного решения с решением для области 3 дает: $a_{2}=a_{1}, \beta_{3}=$ $=(5 \alpha-1) / 4=1$. Таким образом, $\alpha=\alpha_{\min }=1$. Однако при этом решение (1.5), (1.6) описывает течение во всей области 3 , включая и линию тока $\Psi=\Psi_{s}$, так как оно удовлетворяет условию равенства нулю трения вдоль этой линии и регулярно в ее окрестности. Следовательно, для введения области $3 a$ нет необходимости.

Итак, решение в области 3 , удовлетворяющее условию обращения в нуль трения при $\Psi=\Psi_{s}$ и условиям сращивания, имеет вид

$$
\begin{align*}
& u=(-x)^{1 / 4} f_{3}\left(\eta_{3}\right)+O\left[(-x)^{\mu_{4}}\right], \quad Y=Y_{3}\left(\eta_{3}\right)+G_{3}(x)+O\left[(-x)^{1 / 2}\right] \\
& f_{3}\left(\eta_{3}\right)=\left(a_{0}{ }^{2} \eta_{3}{ }^{2}+4 k\right)^{1 / 2}, \quad Y_{3}\left(\eta_{3}\right)=a_{0}{ }^{-1} \ln \left[\eta_{3}+a_{0}{ }^{-1} f_{3}\left(\eta_{3}\right)\right] \tag{1.9}\\
& G_{3}(x)=G_{2}(x)+\left(4 a_{0}\right)^{-1} \ln (-x)+O(1), \eta_{3}=\left(\Psi-\Psi_{s}\right)(-x)^{-1 / 4}
\end{align*}
$$

Заметим, что значение положительных постоянных a_{0} и $\Psi \Psi_{s}$ определяется начальным условием вверх по потоку.

В области 4, которая симметрична области 3 относительно линии тока $\Psi=\Psi_{s}$, решение имеет следующий вид:

$$
u=(-x)^{1 / 4} f_{4}\left(\eta_{4}\right)+O\left[(-x)^{1 / 4}\right], \quad Y=Y_{4}\left(\eta_{4}\right)+G_{4}(x)+O\left[(-x)^{1 / 2}\right]
$$

$$
\begin{align*}
& f_{4}\left(\eta_{4}\right)=\left(a_{0}{ }^{2} \eta_{4}^{2}+4 k\right)^{1 / 4}, \quad Y_{4}\left(\eta_{4}\right)=-a_{0}^{-1} \ln \left[\eta_{4}+a_{0}^{-1} f_{4}\left(\eta_{4}\right)\right] \tag{1.10}\\
& G_{4}(x)=G_{2}(x)+\left(4 a_{0}\right)^{-1} \ln (-x)+O(1), \quad \eta_{4}=\left(\Psi_{s}-\Psi\right)(-x)^{-1 / 4}
\end{align*}
$$

В области 5 , где $\Psi=O(1)$, решение аналогично решению в области \mathcal{Z} и его можно представить следующим образом:

$$
\begin{align*}
& u=U_{5}(\Psi)+(-x)^{1 / 2} 2 k U_{5}^{-1}(\Psi)+O[(-x)] \tag{1.11}\\
& Y=Y_{5}(\Psi)+G_{5}(x)+O\left[(-x)^{1 / 2}\right], \quad Y_{5}(\Psi)=\int U_{5}^{-1}(\Psi) d \Psi
\end{align*}
$$

Из сращивания с решением в области 4 находим, что

$$
U_{5}(\Psi)=a_{0}\left(\Psi_{s}-\Psi\right)+O\left[\left(\Psi_{s}-\Psi\right)^{3}\right] \quad\left(\Psi \rightarrow-\Psi_{5}\right)
$$

$$
\begin{equation*}
G_{5}(x)=G_{2}(x)+\left(2 a_{0}\right)^{-1} \ln (-x)+O(1) \tag{1.12}
\end{equation*}
$$

Для удовлетворения краевым условиям в (1.3) при $\Psi=0$ рассмотрим течение в области 6 . Будем считать, что в этой области действие сил вяз-

кости существенно и поэтому решение здесь представим в виде

$$
\begin{align*}
& u=U_{w}+(-x)^{1 / 2} \ln (-x) f_{6}^{c}\left(\eta_{8}\right)+(-x)^{1 / 2} f_{8}{ }^{1}\left(\eta_{8}\right)+ \tag{1.13}\\
& +O\left[(-x) \ln ^{2}(-x)\right], \eta_{8}=\Psi(-x)^{-1 / 2}
\end{align*}
$$

Подставляя (1.13) в (1.3) получим, что $f_{6}{ }^{\circ}\left(\eta_{6}\right)$ удовлетворяет уравнению Вебера $2 U_{w} f_{8}{ }^{0 \prime \prime}-\eta_{8} f_{6}{ }^{0}+f_{6}{ }^{0}=0$ при следующих краевых условиях: $f_{6}{ }^{\circ}(0)=0$ и $f_{6}{ }^{0}\left(\eta_{6}\right)$ не содержит экспоненциально возрастающего члена при $\eta_{\mathrm{g}} \rightarrow \infty$. Решение этой задачи есть $f_{6}{ }^{\circ}\left(\eta_{\theta}\right)=b_{0} \eta_{\theta}$, где b_{0} - произвольная постоянная. Тогда для функции $f_{8}{ }^{1}\left(\eta_{6}\right)$ приходим к следующей задаче:

$$
\begin{align*}
& f_{6}{ }^{1}\left(\eta_{8}\right)=2 k U_{w}{ }^{-1} h_{8}\left(\xi_{\theta}\right), \quad \eta_{8}=\left(2 U_{w}\right)^{1 / 2} \xi_{6}, \quad \lambda_{0}=\sqrt{2} b_{0} k^{-1} U_{w}^{y / 2} \\
& h_{6}{ }^{\prime \prime}-\xi_{6} h_{6}{ }^{\prime}+h_{8}+\lambda_{0} \xi_{8}-1=0 \tag{1.14}\\
& h_{\theta}(0)=0, \quad h_{8}\left(\xi_{6}\right)=\lambda_{0} \xi_{6} \ln \xi_{8}+O\left(\xi_{6}\right) \quad\left(\xi_{6} \rightarrow \infty\right)
\end{align*}
$$

т. е. $f_{6}{ }^{1}\left(\eta_{\boldsymbol{\theta}}\right)$ также не содержит әкспоненциально возрастающего члена при $\eta_{8} \rightarrow \infty$. Решение этой задачи существует при вполне определенном значении λ_{0}; численное значение $\lambda_{0}=0.7979$. Величина трения на поверхности тела в соответствии с (1.13) ведет себя следующим образом: $u \partial u / \partial \Psi=$ $=\lambda_{0} k\left(2 U_{v}\right)^{-1 / 2} \ln (-x)+O(1)$ при $x \rightarrow-0$. Выражение для функции $Y(x, \Psi)$ в области 6 имеет вид

$$
\begin{align*}
& Y=(-x)^{1 / 2} U_{w}{ }^{-1} \eta_{8}-(-x) \ln (-x) b_{0}\left(2 U_{w}{ }^{2}\right)^{-1} \eta_{6}{ }^{2}+ \\
& +(-x) Y_{6}\left(\eta_{\theta}\right)+G_{8}(x)+O\left[(-x)^{1 / 2} \ln ^{2}(-x)\right] \tag{1.15}\\
& Y_{6}\left(\eta_{8}\right)=-U_{w}-2 \int f_{6}{ }^{1}\left(\eta_{8}\right) d \eta_{6}, \quad b_{0}=\lambda_{0} k\left(2 U_{w}{ }^{3}\right)^{-1 / 8}
\end{align*}
$$

Из сращивания решений в областях 5 и 6 находим, что $U_{5}(\Psi)=$ $=U_{w}+2 b_{0} \Psi \ln \Psi+O(\Psi)$ при $\Psi \rightarrow 0$. Из краевых условий в (1.3) при $\Psi=0$ следует, что в (1.15) функция $G_{6}(x)=0$. Тогда из сращивания (1.15) с решением (1.11), (1.12) получим, что $G_{5}(x)=0$ и функция $G_{2}(x)$, которая входит в разложения (1.4), (1.9), (1.10), есть

$$
\begin{equation*}
G_{2}(x)=-\left(2 a_{0}\right)^{-1} \ln (-x)+O(1) \tag{1.16}
\end{equation*}
$$

при $x \rightarrow-0$. Таким образом, толщина пограничного слоя возрастает по логарифмическому закону.

Проведенный выше анализ показывает, что при $x \rightarrow-0$ действие сил вязкости существенно лишь в тонком пристеночном слое (область 6). В отличие от трехслойной структуры стационарного отрыва на неподвижвой поверхности основной вклад в вытесняющее действие оказывает течение в областях 3 и 4 . Это области невязкого течения, и решения в них описываются нелинейными уравнениями.
2. Особый характер поведения градиента давления, толщины пограничного слоя и трения на поверхности тела при $x \rightarrow-0$ свидетельствует о неприменимости полученных разложений в некоторой окрестности точки $x=0$. Действительно, используя полученные соотношения (1.2), (1.4), (1.16), вышишем следующий член разложения для толщины вытеснения при $x \rightarrow+0: \partial y / \partial x=2 k x^{1 / 2}+O\left(x^{1 / 2}\right)+R^{-1 / 2}\left[-\left(2 a_{0} x\right)^{-1}+O\left(x^{-1 / 2} \ln x\right)\right]$.

В полученном разложении члены становятся одного порядка в области, где $x=O\left(R^{-1 / 3}\right)$. Это и есть область неприменимости полученного выше решения. Здесь взаимодействие пограничного слоя с внешним потенциальным потоком играет определяющую роль.

Итак, рассмотрим теперь течение в области взаимодействия с характерным размером $x^{*}=R^{1 / 3} x=O(1)$.

В основной части пограничного слоя (область 7, фиг. 3) функции течения могут быть представлены в виде асимптотических разложений

$$
\begin{align*}
& u=U_{7}(\Psi)-R^{-1 / s} p^{*}\left(x^{*}\right) U_{7}^{-1}(\Psi)+O\left(R^{-1 / 9}\right) \\
& Y=\left(6 a_{0}\right)^{-1} \ln R+G^{*}\left(x^{*}\right)+Y_{7}(\Psi)+\Phi\left(x^{*}\right) \theta\left(x^{*}\right)+O\left(R^{-1 / \mathrm{s}} \ln R\right) \tag{2.1}\\
& p=p_{00}+R^{-1 / 6} p^{*}\left(x^{*}\right)+O\left(R^{-1 / 2}\right), \quad U_{7}(\Psi)=U_{2}(\Psi), \quad Y_{7}(\Psi)=Y_{2}(\Psi) \\
& p\left(x^{*}\right) \rightarrow-2 k\left(-x^{*}\right)^{1 / 2}, G^{*}\left(x^{*}\right) \rightarrow-\left(2 a_{0}\right)^{-1} \ln \left(-x^{*}\right) \quad\left(x^{*} \rightarrow-\infty\right)
\end{align*}
$$

Здесь $\Phi\left(x^{*}\right)$ - форма верхней линии тока $\Psi=\Psi_{s}$ с началом в точке отрыва (фиг. 3), $\theta\left(x^{*}\right)$ - функция Хэвисайда, равная единице при $x^{*} \geqslant 0$ п нулю при $x^{*}<0$. Это следует из рассмотрения внутреннего предела внешнего разложения (1.4), (1.16). Разложение (2.1) несправедливо в области $\Psi-\Psi_{s}=O\left(R^{-1 / 12}\right)$ (область 8$)$, которая является продолжением области 3 в область взаимодействия. Здесь функции и независимые переменные представим в виде

$$
\begin{align*}
& x=R^{-1 / 8} x^{*}, \Psi-\Psi_{s}=R^{-1 / 12} \Psi_{8}, u=R^{-1 / 12} U_{8}\left(x^{*}, \Psi_{8}\right)+O\left(R^{-1 / 4}\right) \\
& Y=\left(12 a_{0}\right)^{-1} \ln R+Y_{8}\left(x^{*}, \Psi_{8}\right)+O\left(R^{-1 / 8} \ln R\right) \tag{2.2}\\
& p=p_{00}+R^{-1 / 8} p_{8}\left(x^{*}\right)+O\left(R^{-1 / 8}\right)
\end{align*}
$$

Подставляя (2.2) в уравнения Навье - Стокса, получим

$$
U_{8}^{2}+2 p_{8}=2 H_{8}\left(\Psi_{8}\right), \quad U_{8} \frac{\partial Y}{\partial \Psi}=1
$$

Из сращивания с решением в областях 3 и 7 находим, что $H_{8}\left(\Psi_{8}\right)=$ $=a_{0}{ }^{2} \Psi_{8}{ }^{2} / 2, p_{8}\left(x^{*}\right)=p^{*}\left(x^{*}\right), G_{8}{ }^{\prime}\left(x^{*}\right)=G^{* \prime}\left(x^{*}\right)$. Производя затем частичное интегрирование, получаем окончательно

$$
\begin{align*}
& U_{8}\left(x^{*}, \Psi_{8}\right)=\left[a_{0}{ }^{2} \Psi_{8}^{2}-2 p^{*}\left(x^{*}\right)\right]^{1 / 2}, \quad Y_{8}\left(x^{*}, \Psi_{8}\right)= \\
& =a_{0}{ }^{-1} \ln \left\{\left[\Psi_{8}+a_{0}{ }^{-1} U_{8}\left(x^{*}, \Psi_{8}\right)\right] / 2\right\}+G^{*}\left(x^{*}\right)+\Phi\left(x^{*}\right) \theta\left(x^{*}\right) \tag{2.3}
\end{align*}
$$

В области 9 решение следует искать в том же виде, что и для области 8

$$
\begin{align*}
& x=R^{-1 / 9} x^{*}, \quad \Psi_{s}-\Psi=R^{-1 / 12} \Psi_{9}, u=R^{-1 / 12} U_{9}\left(x^{*}, \Psi_{9}\right)+O\left(R^{-1 / 4}\right) \\
& Y=\left(12 a_{0}\right)^{-1} \ln R+Y_{9}\left(x^{*}, \Psi_{9}\right)+O\left(R^{-1 / 6} \ln R\right) \tag{2.4}\\
& p=p_{00}+R^{-1 / 6} p_{9}\left(x^{*}\right)+O\left(R^{-1 / 9}\right)
\end{align*}
$$

В результате подстановки (2.4) в уравнения Навье - Стокса, сращивания с решением в области 4 и последующего интегрирования получаем

$$
U_{9}\left(x^{*}, \Psi_{9}\right)=\left[a_{0}{ }^{2} \Psi_{9}{ }^{2}-2 p_{9}\left(x^{*}\right)\right]^{1 / 2}
$$

$$
\begin{equation*}
Y_{9}\left(x^{*}, \Psi_{9}\right)=-a_{0}{ }^{-1} \ln \left[\Psi_{9}+a_{0}{ }^{-1} U_{9}\left(x^{*}, \Psi_{9}\right)\right]+G_{9}\left(x^{*}\right) \tag{2.5}
\end{equation*}
$$

В силу того что решения в областях 8 и 9 совпадают при $x^{*}<0$ п $\Psi=\Psi_{\text {s, }}$, из (2.2) - (2.5) имеем

$$
\begin{equation*}
p_{9}\left(x^{*}\right)=p^{*}\left(x^{*}\right), G^{*}\left(x^{*}\right)=-a_{0}^{-1} \ln \left[-a_{0}^{-2} p^{*}\left(x^{*}\right)\right]+G_{9}\left(x^{*}\right) \tag{2.6}
\end{equation*}
$$

В области 10 , где $\Psi=O(1)$, для параметров течения верны следующие разложения:

$$
\begin{align*}
& u=U_{10}(\Psi)-R^{-1 / 8} p_{10}\left(x^{*}\right) U_{10}^{-1}(\Psi)+O\left(R^{-1 / 0}\right) \\
& Y=Y_{10}(\Psi)+O\left(R^{-1 / 6}\right), \quad p=p_{00}+R^{-1 / 6} p_{10}\left(x^{*}\right)+O\left(R^{-1 / 6}\right) \tag{2.7}
\end{align*}
$$

Из сращивания с решениями в областях 9 и 5 следует, что в (2.6) un (2.7)

$$
\begin{align*}
& G_{9}\left(x^{*}\right)=a_{0}^{-1} \ln 2, \quad G^{*}\left(x^{*}\right)=-a_{0}^{-1} \ln \left[-\left(2 a_{0}^{2}\right)^{-1} p^{*}\left(x^{*}\right)\right] \tag{2.8}\\
& p_{10}\left(x^{*}\right)=p^{*}\left(x^{*}\right), U_{10}(\Psi)=U_{5}(\Psi), Y_{10}(\Psi)=Y_{5}(\Psi)
\end{align*}
$$

В области 11 в соответствии с разложениями (1.13), (1.15) решение щмеет вид

$$
\begin{align*}
& u=U_{w}-R^{-1 / 6} \ln R b_{0} \Psi_{11} / 3+R^{-1 / 6} U_{11}\left(x^{*}, \Psi_{11}\right)+O\left(R^{-1 / 2} \ln ^{2} R\right), \\
& Y=R^{-1 / 6} U_{w}{ }^{-1} \Psi_{11}+\left(b_{0} / 6 U_{w}{ }^{2}\right) R^{-1 / 3} \ln R \Psi_{11}^{2}+R^{-1 / 2} Y_{11}\left(x^{*}, \Psi_{11}\right)+ \tag{2.9}\\
& +O\left(R^{-1 / 2} \ln ^{2} R\right), \quad p=p_{00}+R^{-1 / 6} p_{11}\left(x^{*}\right)+O\left(R^{-1 / 9}\right), \quad Y_{11}\left(x^{*}, \Psi_{11}\right)= \\
& =-U_{w}{ }^{-2} \int U_{11}\left(x^{*}, \Psi_{11}\right) d \Psi_{11}, \quad \Psi_{11}=R^{1 / 8} \Psi, \quad x^{*}=R^{1 / 2} x
\end{align*}
$$

В результате подстановки (2.9) в уравнения Навье - Стокса и последующего сращивания получаем, что $p_{11}\left(x^{*}\right)=p^{*}\left(x^{*}\right)$ и $U_{11}\left(x^{*}, \Psi_{11}\right)$ является решением следующей задачи:

$$
\begin{align*}
& U_{w} \frac{\partial U_{11}}{\partial x^{*}}+\frac{d p^{*}}{d x^{*}}=U_{w}^{2}!\frac{\partial^{2} U_{11}}{\partial \Psi_{11}^{2}}, \quad U_{11}=0 \quad \text { при } \quad \Psi_{11}=0 \\
& U_{11}\left(x^{*}, \Psi_{11}\right) \rightarrow\left(-x^{*}\right)^{1 / 2} \ln \left(-x^{*}\right) b_{0} \eta_{11}+\left(-x^{*}\right)^{1 / 2} f_{11}\left(\eta_{11}\right) \quad\left(x^{*} \rightarrow-\infty\right) \tag{2.10}\\
& U_{11}\left(x^{*}, \Psi_{11}\right) \rightarrow 2 b_{0} \Psi_{11} \ln \Psi_{11}\left(\Psi_{11} \rightarrow \infty\right) \quad \eta_{11}=\Psi_{11}\left(-x^{*}\right)^{-1 / 2}
\end{align*}
$$

Здесь $f_{11}\left(\eta_{11}\right)$ - решение задачи (1.14).
Для замыкания системы соотношений (2.1) - (2.10) необходимо получение дополнительного условия, учитывающего указанное ранее взаимодействие. С этой целью рассмотрим область внешнего потенциального те-

чения с характерным поперечным размером порядка продольного размера области взаимодействия. Здесь (область 12) решение представим в виде

$$
\begin{align*}
& x^{*}=R^{1 / s} x, y^{*}=R^{1 / 3} y, u=1+R^{-1 / 6} U_{12}\left(x^{*}, y^{*}\right)+O\left(R^{-1 / 2}\right) \\
& v=R^{-1 / 6} V_{12}\left(x^{*}, y^{*}\right)+O\left(R^{-1 / 2}\right), \quad p=p_{00}+R^{-1 / 6} P_{12}\left(x^{*}, y^{*}\right)+O\left(R^{-1 / 2}\right) \tag{2.11}
\end{align*}
$$

В результате подстановки (2.11) в уравнения Навье - Стокса получим, что функция

$$
\begin{equation*}
f(z)=P_{12}\left(x^{*}, y^{*}\right)+i V_{12}\left(x^{*}, y^{*}\right), z=x^{*}+i y^{*} \tag{2.12}
\end{equation*}
$$

является аналитической в верхней полуплоскости. Из условия сращивания с областями 7 п 1 находим

$$
\begin{align*}
& \operatorname{Im} f(z)=G^{* \prime}\left(x^{*}\right) \quad \text { прп } \quad x^{*}<0, \quad y^{*}=0 \\
& \operatorname{Re} f(z)=B_{0} \quad \text { при } \quad x^{*}>0, \quad y^{*}=0 \tag{2.13}\\
& f(z)=i 2 k z^{1 / 2}+B_{0}+o(1) \quad \text { при } \quad z \rightarrow \infty
\end{align*}
$$

Здесь $B_{0}<0, B_{0}=O(1)$ - некоторая постоянная, определяющая значение давления при $x^{*}>0$. Постоянство давления следует из рассмотрения течения в области 17 , которое будет проведено в п. 4. Решение задачи. (2.12), (2.13), как известно [${ }^{18,19}$], имеет вид

$$
P_{12}\left(x^{*}, 0\right)=p^{*}\left(x^{*}\right)=\sqrt{-x^{*}}\left[-2 k+\frac{1}{\pi} \int_{-\infty}^{0} \frac{G^{*^{\prime}}(\xi) d \xi}{\sqrt{-\xi}\left(\xi-x^{*}\right)}\right]+B_{0} \quad\left(x^{*}<0\right)
$$

$$
\begin{equation*}
V_{12}\left(x^{*}, 0\right)=\Phi^{\prime}\left(x^{*}\right)=\sqrt{x^{*}}\left[2 k-\frac{1}{\pi} \int_{-\infty}^{0} \frac{G^{*^{\prime}}(\xi) d \xi}{\left.\overline{\sqrt{-\xi}\left(\xi-x^{*}\right)}\right]-G^{*^{\prime}}\left(x^{*}\right) \quad\left(x^{*}>0\right), ~(, ~}\right. \tag{2.14}
\end{equation*}
$$

Таким образом, система соотношений, описывающая течение в области взаимодействия, становится замкнутой.

Заметим, что в области взаимодействия действие сил вязкости проявляется лишь в тонком пристеночном слое (область 11).

Из построенного выше решения для области взаимодействия следует, что основное воздействие на внешний потенциальный поток оказывает течение в областях 8 п 9 . Это области медленных невязких течений. Решения в них описываются нелинейными уравнениями.

Итак, при отрыве на подвижной поверхности действие сил вязкости играет второстепенную роль и механизм отрыва является по существу «невязким». В этом состоит его основное отличие от механизма отрыва на неподвижной поверхности (см. []).
3. Система уравнений для всех рассмотренных областей при $x=O\left(R^{-1 / 2}\right)$ может быть записана в форме подобия, содержащей один параметр $C_{0}=2^{-1} a_{0}^{1 / 3} k^{-\gamma_{3}} B_{0}$. Нетрудно видеть, что все функции полученной системы соотношений (2.1) - (2.14) выражаются через $p^{*}\left(x^{*}\right), G^{*}\left(x^{*}\right)$ и, следовательно, решение всей задачи сводится к нелинейным уравнениям вида

$$
P(X)=\overline{v-X}\left[-1+\frac{1}{\pi} \int_{-\infty}^{0} \frac{A^{\prime}(\xi) d \xi}{\sqrt{-\xi}(\xi-X)}\right]+C_{0} \quad(X<0)
$$

$$
\begin{equation*}
P(X)=C_{0}(X>0), \quad A^{\prime}(X)=-P^{\prime}(X) / 2 P(X) \tag{3.1}
\end{equation*}
$$

Здесь $X, P(X), A^{\prime}(X)$ в соответствии с законом подобия введены посредством соотношений

$$
x^{*}=\left(k a_{0}\right)^{-2 / s} X, \quad p^{*}=2 k^{2 / s} a_{0}^{-1 / 2} P, \quad G^{*^{\prime}}=2 k^{2 / 3} a_{0}^{-1 / 2} A^{\prime}
$$

Эти уравнения совпадают с соответствующими уравнениями в задаче о разрушении следа [${ }^{20}$]. Результаты численного анализа [${ }^{21}$] показывают, что решение системы (3.1) существует при всех $C_{0}<0$. На фиг. 4 представлено распределение функции давления $P(X)$. Заметим, что точка $X=0$ является точкой устранимого разрыва функций $A(X), P(X)$. Производные этих функций $A^{\prime}(X)$, $P^{\prime}(X)$ имеют здесь разрыв первого рода. Для устранения этого разрыва необходимо рассмотрение решения в области

Фиг. 4 с характерным размером $x=$ $=O\left(R^{-1 / 2}\right)$, где становится существенным поперечное изменение давления. Однако решение для области взаимодействия может быть получено и без рассмотрения этой области.
4. Перейдем теперь к рассмотрению течения за областью взаимодействия. Согласно (1.1), $d p / d x \rightarrow 0$ при $x \rightarrow+0$, тогда из (2.3), (2.5) вдоль верхней и нижней линии тока $\Psi=\Psi$, которые представляют собой тангенсальные разрывы, $U_{8}=\gamma \overline{-2 B_{0}}+\ldots$, $U_{9}=\sqrt{-2 B_{0}}+\ldots$, где $B_{0}<0$ - постоянная, определяюммая величину давлевия при $x \rightarrow+0$. Поәтому решения для слоев смешения (области 13, 14) имеют вид

$$
\begin{align*}
& \psi=R^{-13 / u}\left(-2 B_{0}\right)^{1 / 4}\left(2 s_{ \pm}\right)^{1 / 2} \chi_{ \pm}\left(\eta_{ \pm}\right)+\ldots, \quad \eta_{ \pm}=\left(-2 B_{0}\right)^{1 / 4} R^{11 / u n_{ \pm}}\left(2 s_{ \pm}\right)^{-1 / 2} \\
& \chi_{ \pm}^{\prime \prime \prime}+\chi_{ \pm}{ }^{\prime \prime} \chi_{ \pm}=0, \quad \chi_{ \pm}^{\prime}(+\infty)=1, \quad \chi_{ \pm}(0)=\chi_{ \pm}^{\prime}(-\infty)=0 \tag{4.1}
\end{align*}
$$

где знаки + , - относятся соответственно к верхней и нижней линиям тока $\Psi=\Psi$; $s_{ \pm}, n_{ \pm}$- системы ортогональных криволинейных координат, связанные с линиями тока $\Psi=\Psi$ 。 (фиг. 3). Решение задачи (4.1) известно (см., например, [$\left.{ }^{22}\right]$) п $\chi_{ \pm}(-\infty)=D_{0}=-0.87574$. Течение в слое смешения вызывает движение в области возвратных течений 15 . Здесь решение $\left[{ }^{7},{ }^{20}\right]$, удовлетворяющее условиям сращивания с (4.1), может быть представлено в виде

$$
\begin{align*}
& \psi=R^{-13 / 2 s_{-}^{1 / 2}} \varphi(v)+\ldots, \quad p=p_{00}+R^{-1 / 8 B_{0}+R^{-18 / 12 B_{1}} s_{-}^{-2}+\ldots} \\
& \varphi(v)=3\left(-B_{0} / 2\right)^{1 / 4} k^{-1} D_{0} v-2^{3 / 4}\left(-B_{0}\right)^{1 / 4} D_{0} \tag{4.2}\\
& B_{1}=-9\left(-B_{0}\right)^{1 / 2} 2^{-1 / 2} k^{-2} D_{0}{ }^{2}, \quad v=N s_{-}^{-3 / 2}
\end{align*}
$$

Вблизи поверхности тела при $x \rightarrow+0$ располагается область 16 , где репение имеет вид

$$
\begin{aligned}
& u=U_{w}+x^{1 / 2} \ln x b_{0} \eta_{16}+x^{1 / 2} f_{16}\left(\eta_{16}\right)+O\left(x \ln ^{2} x\right) \\
& Y=x^{1 / 2} U_{w}{ }^{-1} \eta_{16}-x \ln x b_{0}\left(2 U_{w}{ }^{2}\right)^{-1} \eta_{18}{ }^{2}+x Y_{16}\left(\eta_{16}\right)+O\left(x^{3 / 2} \ln ^{2} x\right) \\
& Y_{16}\left(\eta_{16}\right)=-U_{w}{ }^{-2} \int f_{16}\left(\eta_{18}\right) d \eta_{16}, \quad \eta_{18}=\Psi x^{-1 / 2} ; \quad f_{16}\left(\eta_{16}\right)=b_{0} U_{w}^{1 / 2} h_{16}\left(\xi_{16}\right) \\
& \eta_{16}=U_{w}^{1 / 2} \xi_{18} ; \quad 2 h_{18}{ }^{\prime \prime}+\xi_{18} h_{18}{ }^{\prime}-h_{18}-2 \xi_{18}=0 \\
& h_{16}(0)=0, \quad h_{18}\left(\xi_{16}\right)=2 \xi_{16} \ln \xi_{16}+O\left(\xi_{16}\right) \quad\left(\xi_{16} \rightarrow \infty\right)
\end{aligned}
$$

В области 17 , которая является продолжением области 15 , решение внолне аналогично (4.2) и имеет вид

$$
\begin{align*}
& \psi=-R^{-47 / 2}\left\{N^{*}\left[-2 F\left(s_{-}^{*}\right)\right]^{1 / 2}+\left(-2 B_{0}\right)^{1 / 4} \overline{2} D_{0} s_{-}^{* / 2}\right\}+\ldots \\
& p=p_{00}+R^{-1 / 2} B_{0}+R^{-5 / 12 F}\left(s_{-}^{*}\right)+\ldots, \quad s_{ \pm}{ }^{*}=R^{1 / s_{ \pm}}, \quad N^{*}=R^{1 / 2} N \tag{4.3}
\end{align*}
$$

где функция $F\left(s_{-}\right.$) определяется из условия сращивания с решением в области 18, вдоль линии тока, форма которой определяется выражением (2.14). Из разложения (4.3) следует, что при $x^{*}>0$ в главном члене давление постоянно. Это оправдывает сделанное выше (п. 2) предположение. Решение для слоев смешения (области 18,19) в области взаимодействия имеет вид

$$
\psi=R^{-17 / 2 a}\left(-2 B_{0}\right)^{1 / 4}\left(2 s_{ \pm}^{*}\right)^{1 / 2} h_{ \pm}\left(\xi_{ \pm}\right)+\ldots, \quad \xi_{ \pm}=\left(-2 B_{0}\right)^{1 / 4} R^{5 / s} n_{ \pm}\left(2 s_{ \pm}^{*}\right)^{-1 / 2}
$$

функция $h_{ \pm}\left(\xi_{ \pm}\right)$является решением задачп (4.1).
5. Остановимся теперь на случае, когда скорость движения поверхности тела мала. Пусть $U_{w}=\varepsilon(R) U_{w}{ }^{\circ}$, где постоянная $U_{w}{ }^{\circ}>0, U_{w}{ }^{\circ}=O(1)$ и $\varepsilon(R) \rightarrow 0$ при $R \rightarrow \infty$, а предельное состояние течения подчиняется условию Бриллюэна - Вилля, т. е., следуя [${ }^{1}$] в выражениях (1.1), (1.2), полагаем $k=\delta(R) k_{0}, k_{0}>0, k_{0}=O(1), \delta(R) \rightarrow 0$ при $R \rightarrow \infty$. Можно показать, что при этом $\delta(R)=\varepsilon^{1 / 2}(R)$ и если $\varepsilon(R)>O\left(R^{-1 / 8}\right)$, то в области взаимодействия, где $x=O\left[R^{-1 / 2} \varepsilon^{1 / 2}(R)\right]$ п $d p / d x=O\left[R^{1 / \varepsilon^{1 / s}}(R)\right]$, течение имеет ту же структуру, что в рассмотренной выше задаче. При всех $\varepsilon(R)<O\left(R^{-1 / 8}\right)$ это решение теряет смысл и в первом приближении имеет место отрыв от неподвижной поверхности [${ }^{1}$]. В случае если $\varepsilon(R)=R^{-1 / 8}$, течение имеет ту же структуру, что п при $\varepsilon(R)<O\left(R^{-1 / 8}\right)$, п отличие состоит лишь в том, что за областью взаимодействия вместо вязкого пристеночного слоя ['] имеет место слой смешения типа (4.1). Точка отрыва располагается при этом не на поверхности тела, а в пристеночном слое, где $y=O\left(R^{-5 / 5}\right)$. Переход от этого случая к частному случаю, когда $k=O(1)$, а U_{w} по-прежнему мало, может быть осуществлен так же, как это было сделано в работах $\left[{ }^{2,7}\right]$. При этом промежуточное значение $\varepsilon(R)=R^{-1 / 2}$.
6. Рассмотрим теперь более подробно условия применимости аналогии между нестационарным отрывом на неподвижной поверхности и стационарным отрывом на подвижной поверхности. В качестве исходного характерного значения времени T возьмем отношение характерного размера тела L к скорости на свободной линии тока U_{00} (см. ІІ. 1). Пусть x_{1}, y_{1} система координат, связанная с неподвижной поверхностью тела, относительно которой точка отрыва движется с конечной скоростью- $\dot{x}_{0}(t)$ (точкой обозначено дифференцирование по времени). Здесь $t_{1}=\sigma(R) t$, $x_{1}=x-\sigma(R) x_{0}(t), \quad y_{1}=y ; \quad \sigma(R)$ определяет масштаб времени нестационарного процесса. В окрестности точки отрыва решение запишем в виде

$$
\begin{align*}
& u_{1}\left(x_{1}, y_{1}, t_{1}, R\right)=-\dot{x}_{0}(t)+u(x, y, t, R) \\
& v_{1}\left(x_{1}, y_{1}, t_{1}, R\right)=v(x, y, t, R), \quad p_{1}\left(x_{1}, y_{1}, t_{1}, R\right)=p(x, y, t, R) \tag{6.1}
\end{align*}
$$

тде функции без индекса представляют собой решение в системе координат, связанной с точкой отрыва. Подставляя выражения (6.1) в нестационарные уравнения Навье - Стокса, приходим к системе уравнений для функций без индекса, которая отличается от стационарных уравнений Навье - Стокса присутствием членов

$$
-\sigma^{-1}(R) \ddot{x}_{0}(t), \quad \sigma^{-1}(R) \frac{\partial u}{\partial t}, \quad \sigma^{-1} \frac{\partial v}{\partial t}
$$

Определим теперь, каково должно быть значение $\sigma(R)$, чтобы во всех уравнениях, описывающих течение в области взаимодействия (см. п. 2), этими членами можно было бы пренебречь. Наибольший порядок, который

в этих уравнениях имеют члены, содержащие производную по времени, әто $O\left[\sigma^{-1}(R)\right]$. Однако в полученном выше стационарном решении главные члены в уравнениях для области взаимодействия имеют порядок $R^{1 / \epsilon}$ и, следовательно, если $\sigma^{-1}(R)<O\left(R^{1 / 6}\right)$, течение описывается стационарными уравнениями и время входит как параметр. При этом $u_{1}=v_{1}=0$ при. $y_{1}=0$, поскольку $u=U_{w}(t)=\dot{x}_{0}(t), v=0$ при $y=0$.

Итак, в окрестности точки отрыва, которая движется вверх по потоку. со скоростью $-\dot{x}_{0}(t)$ при условии $\sigma(R)>O\left(R^{-1 / ¢}\right)$, течение является квазистационарным п имеет место аналогия с отрывом на подвижной поверхности.

Аналогичные рассуждения для случая медленных движений точки отрыва с предельным состоянием, удовлетворяющим условию Бриллюэна Вилля (см. п. 5), приводят к следующему: $\sigma(R)>O\left[R^{-1 / \varepsilon^{2 / s}}(R)\right]$. В частности, когда $\varepsilon(R)=R^{-1 / 8}$, нестационарность становится существенной если $\sigma(R)=R^{-1 / 4}\left[{ }^{23-25}\right]$.
7. Из проведенного анализа решения в окрестности точки отрыва, движущейся вверх по потоку, следует, что при некоторых ограничениях на ускорение, с которым происходит это движение, имеет место аналогия со стационарным отрывом на подвижной поверхности.

Отрыв потока, так же как в стационарных течениях, является самоиндуцированным и происходит под действием большого локального положительного градиента давления. Однако механизм нестационарного отрыва является «невязким». Роль вязких эффектов сводится по существу к «сглаживанию» разрывов. В этом состоит его основное отличие от механизма стационарного отрыва (см. [7]).

Следует отметить также, что в случае, когда скорость движения точки отрыва есть величина порядка единицы, отрыву пограничного слоя (так же как и разрушению следа [${ }^{20}$]) предшествует логарифмическое увеличение его толщины. В области взаимодействия толщина пограничного слоя есть величина порядка $R^{-1 / 2} \ln R$.

В заключение автор благодарит А. И. Рубана на большое внимание и помощь в работе, а также О. С. Рыжова за ряд ценных замечаний.

Поступила 27 XI 1978

ЛИТЕРАТУРА

1. Сычев B. B. О ламинарном отрыве. Изв. АН СССР. МЖГ, 1972, № 3.
2. Сычев B. B. Отрыв пограничного слоя от плоской поверхности. Уч. зап. ЦАГИ, 1978, т. 9, № 3.
3. Рубан $А$. И. О ламинарном отрыве от точки излома твердой поверхности. Уч. зап. ЦАГИ, 1974, т. 5, № 2.
4. Riley N., Stewartson K. Trailing edge flows. J. Fluid Mech., 1969, vol. 39, No. 1.
5. Рубан А. И. К асимптотической теории течения вблизи задней кромки тонкого профиля. Уч. зап. ЦАГИ, 1977, т. 8, № 1.
6. Stewartson K. Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech., 1974, N. Y.- L., Acad Press, vol. 14.
7. Сычев В. В., Рубан А. И. Асимптотическая теория отрыва ламинарного пограничного слоя в несжимаемой жидкости. Успехи механики, 1979, т. 2, № 4.
8. Нейланд В. Я. К теории отрыва ламинарного пограничного слоя в сверхзвуковом потоке. Изв. АН СССР, МЖГ, 1969, № 4.
9. Stewartson K., Williams P. G. Self-induced separation. Proc. Roy. Soc. Lond. Ser. A, 1969, vol. 312, No. 1509.
10. Нейланд B. Я. Течение за точкой отрыва пограничного слоя в сверхзвуковом потоке. Изв. АН СССР. МЖГ, 1971, № 3.
11. Goldstein S. On laminar boundary-layer flow near a position of separation. Quart. J. Mech. Appl. Math., 1948, vol. 1, No. 1.
12. Sears W. R., Telionis D. P. Boundary-layer separation in unsteady flow SIAM J. Appl. Math., 1975, vol. 28, No. 1.
13. Williams J. C. Incompressible boundary-layer separation. Annual Rev. Fluid Mech., Paloalto, Calif., 1977, vol. 9.
14. Telionis D. P., Werle M. J. Boundary-layer separation from downstream moving boundaries. Trans. ASME, J. Appl. Mech., 1973, vol. 40, No. 2.
15. Telionis D. P., Tsahalis D. Th., Werle M. J. Numerical investigation of unsteady boundary-layer separation. Phys. Fluids, 1973, vol. 16, No. 7.
16. Van-Dyke M. Perturbation methods in fluid mechanics (Annotated Edition), Stanford, 1975.
17. Ackerberg R. C. Boundary-layer separation at a free streamline. Pt. I. Two-dimensional flow. J. Fluid. Mech., 1970, vol. 44, No. 2.
18. Лавренгьев M. А., Шабаг Б. В. Методы теории функций комплексного переменного. М., «Наука», 1973.
19. Рубан А., И. Численный метод решения задачи о свободном взаимодействии. Уч. зап. ЦАГИ, 1976, т. 7, № 2.
20. Сычев Вик. В. О разрушении плоского ламинарного следа. Уч. зап. ЦАГИ, 1978, т. 9 , № 6.
21. Сычев Вик. В. Численное решение асимптотической задачи о разрушении ламинарного следа. Уч. вап. ЦАГИ, 1979, т. 10, № 5.
22. Laminar boundary layers. L. Oxford, clarendon press, 1963.
23. Brown S. N., Daniels P.G. On the viscous flow about the trailing edge of a rapidly oscillating plate. J. Fluid Mech., 1975, vol. 67, No. 4.
24. Рыжов О. С., Терентьев Е. Д. О нестационарном пограничном слое с самоивдудированным давлением. ПММ, 1977, т. 41, 승.
25. Рубан А. И. Численное решение локальной асимптотической задачи о нестационарном отрыве ламинарного пограничного слоя в сверхзвуковом нотоке. Ж. вычисл. матем. и матем. физ., 1978, т. 18, № 5.
