УДАР СФЕРИЧЕСКОИ ОБОЛОЧКИ О ПОВЕРХНОСТЬ ЖИДКОСТИ

А. Г. ГОРІІКОВ, Э. И. ГРИГОЛЮК

(Москва)
Задачи об ударе плоских и упругих тел о жидкость интенсивно начали исследоваться еще в $30-\mathrm{x}$ тодах в связи с расчетами гидросамолетов при посадке и судов на волнении $\left[{ }^{[1-3}\right]$. При ударе произвольного тела о жидкость величина и характер распределения гидродинамической нагрузки по поверхности тела определяется многими факторами. Учесть все эти факторы достаточно трудно в силу нелинейности граничных условий на свободной поверхности, наличия струйных явлений и брызгообразования, приводящих к разрывным решениям.

К настоящему времени наиболее подробно изучен удар жестких тел о воду. Вопросы учета гидроупругого взаимодействия между телом и жидкостью рассматривались из введенных еще Вагнером соображений в основном для плоскокилеватых тел $\left[^{3-5}\right]$. Подробная библиография по проблеме удара тел о жидкость приводится в обзоре [${ }^{6}$].

Рассматривается вертикальный удар тонкой пологой сферической оболочки о поверхность идеальной несжимаемой жидкости. По контуру оболочка опирается на упругий шпангоут, который скреплен с жестким телом, массой M_{0}. Масса жесткого груза M_{0} намного превышает массу оболочки m_{0}. Предполагается, что начальная скорость удара v_{0} мала по сравнению со скоростью распространения звука с в жидкости.

1. В дальнейшем ограничимся рассмотрением только осесимметричных деформаций оболочки. Тогда при некоторых соотношениях параметров оболочки и опорного шпангоута [] уравнение движения оболочки относительно нормального прогиба w_{1} и граничные условия удается представить в особенно простой форме

$$
\begin{gather*}
\frac{\partial^{2} w}{\partial \tau^{2}}=-A \nabla^{2} \nabla^{2} w+B \nabla^{2} w-\gamma w+\frac{1}{k} \frac{d V}{d \tau}+D p^{*} \tag{1}\\
w=\nabla^{2} w=0 \quad \text { при } \alpha=1
\end{gather*}
$$

Здесь

$$
\begin{gathered}
w=w_{1} / h, \quad k=h / R, \quad \tau=c t / R, \quad \gamma=E / \rho_{0} c^{2}, \quad p^{*}=p / \rho c^{2} \\
A=\gamma k^{2} / 12 \varphi_{0}{ }^{4}\left(1-v^{2}\right), \quad B=N_{0} \gamma h / E R_{0}{ }^{2} k^{2}, \quad D=1 / \eta k^{2}, \quad \eta=\rho_{0} / \rho \\
V=v / c, \quad \varphi_{0}=R_{0} / R, \quad \alpha=r / R_{0}, \quad \nabla^{2}=\partial^{2} / \partial \alpha^{2}+1 / \alpha \partial / \partial \alpha
\end{gathered}
$$

где h, R - толщина и радиус кривизны оболочки; v, E, ρ_{0} - соответственно коэффициент Пуассона, модуль упругости и плотность материала оболочки; ρ, c - плотность жидкости и скорость звука в ней; R_{0} - радиус опорного шпангоута; t - время; r - текущий радиус цилиндрической системы координат; p - гидродинамическое давление; v - скорость движения оболочки как твердого тела; N_{0} - постоянное начальное усилие в оболочке.

При выводе уравнения (1) не учитывались силы инерции в срединной поверхности оболочки и проекция инерционной сцлы от движения оболочки как твердого тела на касательную к контуру оболочки. Положительное значение прогиба совпадает с внутренней нормалью. В начальный момент времени $w=\partial w / \partial \tau=0$ при $\tau=0$.
2. Для определения гидродинамических нагрузок на начальном этапе взаимодействия оболочки с жидкостью воспользуемся теми же вагнеровскими соображениями, что и для клина в плоском случае [1]. При небольших глубинах погружения течение около тела вращения будет аналогично течению впереди эквивалентного диска радиуса $b(t)$, который движется поступательно.

Тогда потенциал скоростей возмущенного движения жидкости $\varphi=$ $=\varphi_{1}+\varphi_{2}$ (в предположении, что он существует) можно представить в виде ($\mu 0 \xi$ - эллиптические координаты)

$$
\begin{gather*}
\varphi_{1}=\frac{2 v}{\pi} b \mu(1-\xi \operatorname{arcctg} \xi), \quad \varphi_{2}=\sum_{n=0}^{\infty} B_{n} P_{2 n+1}(\mu) Q_{2 n+1}(\xi \xi) \\
B_{n}=-b\left[\frac{\partial}{\partial \xi} Q_{2 n+1}(i \xi)\right]_{\xi=0}^{-1} \int_{0}^{1} \mu \frac{\partial u_{1}}{\partial t} P_{2 n+1}(\mu) d \mu \tag{2}
\end{gather*}
$$

Здесь $P_{2 n+1}(\mu), Q_{2 n+1}(i \xi)$ - полиномы Лежандра первого и второго рода; $\mu=0$ соответствует свободной поверхности жидкости; $\xi=0$ соответствует поверхности диска.

Потенциал φ_{1} соответствует поступательному движению диска со скоростью v, а потенциал φ_{2} обусловлен наличием дополнительного поля скоростей $\partial w / \partial t$, вызванных деформацией оболочки [8, 9].

После перехода к безразмерным координатам на основании соотношения Коши - Јагранжа получим

$$
\begin{align*}
p^{*}= & p_{1}^{*}+p_{2}^{*}, \quad p_{1}^{*}=\frac{2}{\pi}\left[\frac{V^{2} a}{\varphi_{0} u \sqrt{\beta^{2}-\alpha^{2}}}+\varphi_{0} \sqrt{\beta^{2}-\alpha^{2}} \frac{d V}{d \tau}\right] \tag{3}\\
p_{2}^{*} & =-\frac{k}{2 \beta^{2}} \sum f_{n}\left\{\frac{V}{u}\left[P_{2 n+1}(\mu)+\frac{1-\mu^{2}}{\mu} \frac{\partial}{\partial \mu} P_{2 n+1}(\mu)\right] \times\right. \\
& \left.\times \int_{0}^{\beta} \alpha \frac{\partial w}{\partial \tau} P_{2 n+1}(\mu) d \alpha+a P_{2 n+1}(\mu) \int_{0}^{\beta} \alpha \frac{\partial^{2} w}{\partial \tau^{2}} P_{2 n+1}(\mu) d \alpha\right\}
\end{align*}
$$

причем

$$
\begin{gathered}
f_{n}=\frac{4 n+3}{\pi}\left[\frac{n!^{2} 2^{2 n+1}}{(2 n+1)!}\right]^{2}, \quad \mu=\frac{\sqrt{\beta^{2}-\alpha^{2}}}{\beta}, \\
a=\frac{b}{R}, \quad u=\frac{V}{d a / d \tau}, \quad \beta=\frac{b}{R_{0}}
\end{gathered}
$$

Функция $u(\tau)$ в данном случае введена формально по аналогии с ударом жестких тел, и она уже не имеет универсального значения как при ударе жестких тел ($u(\tau)$ должна находиться в процессе решения).

При выводе формул (3) в интеграле Коши - Лагранжа были опущены некоторые слагаемые, пропорциональные квадрату полной скорости движения жидкости. Роль этих слагаемых увеличивается с ростом глубины погружения.

Наибольшие трудности при таком подходе состоят в определении радиуса смоченной поверхности $b(t)$. Его можно определить из соответствующего интегрального уравнения, как и в случае вертикального удара плоскокилеватого упругого тела [5].

Здесь для упрощения задачи при определении $b(t)$ рассмотрим вертикальный удар эквивалентной механической системы, состоящей из двух

жестких тел массой M_{0} и m_{0}, связанных между собой упругой пружиной: В контакт с жидкостью входит тело n_{0}, масса которого и форма ударяющейся поверхности соответствует массе и форме жесткой оболочки. Движение этой системы будет описываться следующими уравнениями [${ }^{3}$:
$x_{1}{ }^{\bullet}+\omega x\left(x_{1}-x_{2}\right)-\vartheta=0, \quad(1+m) x_{2}{ }^{\bullet}+m^{\bullet} x_{2}{ }^{\bullet}-\omega\left(x_{1}-x_{2}\right)-\vartheta=0$
при этом

$$
\begin{gather*}
x_{1}=y_{1} / R, \quad x_{2}=y_{2} / R, \quad \omega=\omega_{0} R^{2} / c^{2} m_{0} \tag{4}\\
\vartheta=g R / c^{2}, \quad m=4 \rho b^{3} / 3 m_{0}, \quad x=m_{0} / M_{0}
\end{gather*}
$$

Здесь y_{1} - перемещение тела $M_{0} ; y_{2}$ - перемецение тела $m_{0} ; \omega_{0}$ жесткость пружины; g - ускорение силы тяжести.

Жесткость пружины ω_{0} должна определяться из эксперимента или теоретическим путем.

В этом случае функция $u=x_{2}{ }^{*} / a^{*}$ определяется выражением [${ }^{10}$]

$$
\begin{equation*}
u=\frac{1+a^{2}}{4 a^{2}} \ln \frac{1+a}{1-a}-\frac{1}{2 a} \tag{5}
\end{equation*}
$$

К системе (4) необходимо присоединить начальные условия

$$
\begin{equation*}
x_{1}=x_{2}=0, \quad x_{1}^{\circ}=x_{2}^{\circ}=V_{0} \quad \text { при } \tau=0 \tag{6}
\end{equation*}
$$

Система (4) с учетом (5) и (6) интегрировалась численно методом Рунге - Кутта (жесткость ω_{9} определялась через частоту колебаний пер-
 вого тона оболочки). Из решения этой системы определялся закон изменения $a(\tau), u(\tau), V(\tau)$ и $V^{\cdot}(\tau)$. Полученные данные использовались в дальнейшем для решения уравнения (1).
3. Для рассматриваемого частного случая перемещение оболочки $w(\alpha, \tau)$ удобно представить в форме

$$
\begin{equation*}
w=\sum_{i} \Theta_{i} J_{0}\left(\xi_{i} \alpha\right) \tag{7}
\end{equation*}
$$

где $J_{0}\left(\xi_{i} \alpha\right)$ - функция Бесселя нулевого порядка, а ξ_{i} - корни уравнения $J_{0}\left(\xi_{i}\right)=0$.

Раскладывая внешнюю нагрузку в ряд посоответствующим функциям Бесселя, после применения процедуры И. Г. Бубнова [${ }^{11}$] получим систему обыкновенных дифференциальных уравнений относительно обобщенных координат $\Theta_{i}(\tau)$, которая интегрировалась численно методом Рунге - Кутта при следующих значениях характерных параметров оболочки и среды:

$$
k=0.0255, \quad \varphi_{0}=0.42, \quad \gamma=3.91, \quad \eta=0.428, \quad V_{0}=6.66 \cdot 10^{-3} ; \quad v=0.3, \quad x=0.07 .
$$

Вычисления проводились для $i=1 \div 7, n=0 \div 4$.
На фигуре показано изменение суммарного прогиба w (кривая 1) и скорости \dot{w} (кривая 2) в центре панели. На этой же фигуре кривая 3 характеризует изменение во времени скорости движения всей системы как твердого тела V, а кривая 4 соответствует V°.

Наибольший вклад в суммарный прогиб дают первые четыре члена ряда.

ЛИТЕРАТУРА

1. Wagner H. Uber Stoss - und Gleitvorgänge der Oberfläche von Flüssigkeiten. Z. angew. Math. und Mech. 1932, Bd 12, H. 4, S. 199-215.
2. Седов Л. И. Об ударе твердого тела плавающего на поверхности жидкости. Тр. ЦАГИ, 1934, вып. 187, стр. 1-27.
3. Sydow J. Über den Einfluss von Federung und Kielung auf den Landestoss. Deutschen Versuchsanstalt für Luftfahrt, Jahrbuch. 1938, S. 93-102.
4. Пов ид ки й А. С. Посадка гидросамолетов. Тр. ЦАГИ, 1939, вып. 423, стр. 1-83.
5. Meyerh off W. K. Die Berechnung hydroelastischer Stosse. Schiffstechnik, 1965, Bd. 17, H. 60, S. 18-30; H. 61, S. 49-64.
6. Григолюк Э. И. Проблемы взаимодействия оболочек с жидкостью. Tp. VII Bсес. конф. по теории пластин и оболочек, 1969, М., «Наука», 1970, стр. 755-778.
7. Григолюк Э. И., Г оршков А. Г. Действие акустической волны давления на пологую сферическую оболочку. Докл. АН СССР, 1968, т. 182, № 4, стр. 787-789.
8. Wilkinson J. P. D., CappelliA. P., Salzman R. N. Hydroelastic interaction of shells of revolution during water impact. AIAA Journal, 1968, vol. 6, No. 5, pp. 792-797.
9. Горшков А. Г., Коган Ф. А. Удар упругих и жестких тел о воду. Изв. АН CCCP, МТТ, 1969, № 5, стр. 189.
10. Schmieden C. Die Aufschlag von Rotationskorparn auf eine Wasseroberflache. Z. angew. Math. und Mech., 1953, Bd 33, H. 4, S. 147-151.
11. Бубнов И. Г. Отзыв о работе проф. С. П. Тимошенко «Об устойчивости упругих систем». Сб. С-Петербургск. ин-та инж. путей сообщения, 1913, вып. 31, стр. 33-36. См. также в кн.: И. Г. Бубнов Избр. тр., Ј., Судпромгиз, 1956, стр. 136-139.
