ТЕЧЕНИЕ ВИХРЕВОГО ПОТОКА В ОКРЕСТНОСТИ КРИТИЧЕСКОЙ ТОЧКИ

И. А. БЕЛОВ, Л. И. ШУБ

(Ленинград)

Исследуется течение в окрестности критической точки преграды осесимметричного потока вязкой несжимаемой жидкости, когда в набегающий поток введены стационарные вихри, ориентированные в направлении угловой координаты. Приводится решение уравнения переноса вихря в случае внешнего потока, содержащего один вихрь наибольшей величины в низкочастотной части спектра. На основе использования конечного интегрального преобразования Ханкеля задача сведена к решению системы обыкновенных дифференциальных уравнений. Показано, что достаточно большой по величине вихрь может существенно влиять на структуру вязкого течения вблизи преграды.

Рассмотрим стационарное осесимметричное течение вязкой несжимаемой жидкости в цилиндрических координатах ξ , φ , ζ . Набегающий поток ограничен бесконечной плоской преградой с критической $\xi = 0$, $\zeta = 0$. Уравнения, определяющие течение жидкости, запишем в виде

$$v_r \frac{\partial \Omega}{\partial r} + v_z \frac{\partial \Omega}{\partial z} - \frac{v_r \Omega}{r} = \Delta \Omega - \frac{1}{r^2} \Omega$$
(1)

$$\Omega \equiv \Omega_{\varphi} = \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}, \quad v_r = \frac{1}{r} \frac{\partial \psi}{\partial z}, \quad v_z = -\frac{1}{r} \frac{\partial \psi}{\partial r}$$
(2)

$$\begin{pmatrix} \frac{P}{\nu} \\ \frac{V}{\nu} \end{pmatrix} \xi, \quad z = \begin{pmatrix} \frac{P}{\nu} \\ \frac{V}{\nu} \end{pmatrix} \zeta, \quad v_r = \frac{v_{\xi}}{(\beta \nu)^{1/2}}$$
$$v_z = \frac{v_{\xi}}{(\beta \nu)^{1/2}}, \quad \Omega(r, z) = \frac{\Omega(\xi, \zeta)}{\beta}$$

r =

Здесь ψ — функция тока, β — временная постоянная в окрестности критической точки, ν — кинематическая вязкость.

Известно точное решение (1), (2) для случая безвихревого набегающего потока [²]. В отличие от [²] предположим, что набегающий на преграду поток содержит спектр вихрей, распределенных по координате r с длинами волн $\lambda_1, \lambda_2, \ldots, \lambda_n$, причем λ_1 — наибольшая или основная длина волны спектра.

На участке $0 \leq r \leq 1/2\lambda_1$ распределение вихрей представим в виде

$$\Omega = -\sum_{n=1}^{\infty} A_n k_n z J_1(k_n r) \qquad \left(k_n = \frac{2\alpha_n}{\lambda_1}\right) \tag{3}$$

Здесь $a_n - n$ -й корень уравнения $J_1(r) = 0$. Тогда функция тока набегающего потока запишется так:

$$\psi(r,z) = r^2 z - \sum_{n=1}^{\infty} \frac{1}{k} A_n r z J_1(k_n r)$$
(4)

В (4) первый член представляет собой функцию тока невозмущенного движения; второй — функцию тока возмущающего движения. Задание Ω , ψ в набегающем потоке в форме (3), (4) позволяет рассматривать A_n как отношение величины *n*-го вихря спектра к средней величине вихря в вязком слое из-за касательных напряжений. Для того чтобы завихренность набегающего потока существенно влияла на структуру вязкого течения вблизи преграды, спектр вихрей должен содержать по крайней мере один вихрь с величиной A порядка единицы. Число k_n может рассматриваться как безразмерное волновое число *n*-го вихря. По определению волнового числа произведение $k_n \lambda_n$ есть постоянная величина для рассматриваемого участка $[0, \frac{1}{2}\lambda_1]$. Отсюда для определения длины волны *n*-го вихря спектра имеем соотношение $k_n \lambda_n = k_1 \lambda_1 = \text{const.}$

Учитывая (4), решение (1), (2) естественно искать в виде

$$\psi = r^2 f_0(z) - \sum_{n=1}^{\infty} \frac{1}{k_n} f_n(z) r J_1(k_n r)$$
(5)

Знак перед суммой в (5) связан с направлением вращения первого от оси z вихря. Знак минус указывает на направление вращения по часовой стрелке.

Рассмотрим случай, когда набегающий поток содержит один вихрь наибольшей величины (величины остальных вихрей пренебрежимо малы). Тогда, сопоставляя выражения (4) и (5), граничные условия для функций f_0 и f_n запишем в виде

$$f_0(0) = f_0'(0) = 0, \quad f_0'(\infty) = 1; \quad f_1(0) = f_1'(0) = 0, \quad f_1'(\infty) = A_1(6)$$

$$f_n(0) = f_n'(0) = 0, \quad f_n'(\infty) = 0 \qquad (n=2,3,...)$$

Отметим, что, несмотря на характер граничных условий ($A_n = 0$ для всех $n \neq 1$), сохранение бесконечного числа членов в (5) необходимо вследствие нелинейности уравнения (1).

В предположении, что (5) является решением (1), (2), ряд, входящий в (5), сходится, так как по построению это — ряд Фурье — Бесселя для возмущающего движения. Анализ ограничим рассмотрением случая, когда основная длина волны достаточно велика, т. е. когда волновое число $k_1 \ll 1$. Как показано в работе [¹], посвященной изучению турбулентных характеристик потока в окрестности критической точки. наибольшая часть турбулентной энергии концентрируется именно в низкочастотных компонентах вихря,

Если подставить (5) в уравнение (1) и пренебречь членами, содержащими k_n^2 , то полученное выражение после интегрирования по *y* от 0 до ∞ с учетом граничных условий (6) имеет вид

$$r^{2}(f_{0}^{\prime\prime\prime}+2f_{0}f_{0}-f_{0}^{\prime\prime2}+1)-\sum_{n}(f_{n}^{\prime\prime\prime\prime}+2f_{0}f_{n}^{\prime\prime\prime})\frac{1}{k_{n}}rJ_{1}(k_{n}r)+$$

$$+\sum_{n}(f_{0}^{\prime\prime}f_{n}^{\prime}-f_{0}^{\prime\prime\prime}f_{n}-A_{1})r^{2}J_{0}(k_{n}r)-\sum_{n,i}\frac{1}{k_{n}}(f_{n}^{\prime\prime}f_{i}^{\prime}-f_{i}f_{n}^{\prime\prime\prime}-A_{1}^{2})\times$$

$$\times rJ_{0}(k_{i}r)J_{1}(k_{n}r)+\sum_{n,i}\frac{1}{k_{i}k_{n}}(f_{i}^{\prime\prime}f_{n}^{\prime\prime}-A_{1}^{2})J_{1}(k_{i}r)J_{1}(k_{n}r)\equiv L(r,z)=0$$
(7)

Суммирование по *n*, *i* в (7) производится для таких *n*, *i*, для которых условие $k_n, k_i \ll 1$ еще соблюдается. Отметим, что при $f_n \equiv 0$ выражение

(7) сводится к известному уравнению относительно f_0 , описывающему течение в окрестности критической точки в случае безвихревого набегающего потока [²].

Для решения задачи воспользуемся формулой конечного преобразования Ханкеля, применяя ее к выражению L(r, z) на участке $[0, \frac{1}{2}\lambda_1]$

$$\int_{0}^{2\lambda_{1}} L(r,z) r J_{0}(k_{p}r) dr = 0, \quad k_{p} = \frac{2\alpha_{p}}{\lambda_{1}} \qquad (p=0,1,2,\dots,n)$$
(8)

В (8) произведем замену переменных

$$r = \frac{1}{2}\lambda_{i}x, \quad 0 \leq x \leq 1$$

и введем обозначения $\alpha_n = \gamma$, $\alpha_i = \mu$, $\alpha_p = \varkappa$. При этом по определению волнового числа $J_1(\gamma) = J_1(\mu) = J_1(\varkappa) = 0$. Тогда с учетом (7) интеграл (8) примет вид

$$\int_{0}^{1} L(x,z) x J_{0}(\varkappa x) dx = 0 \qquad (\varkappa = 0, \ 3.83, \ 7.01, \ 10.17, \ldots) \tag{9}$$

При различных к отсюда имеем при к = 0

4

$$\int_{0}^{1} \gamma x^{2} J_{1}(\gamma x) dx = -\gamma \frac{\partial}{\partial \gamma} \int_{0}^{1} x J_{0}(\gamma x) dx = -J_{0}(\gamma)$$

$$\int_{0}^{1} x^{3} J_{0}(\gamma x) dx = -\frac{1}{\gamma} \frac{\partial}{\partial \gamma} \gamma \frac{\partial}{\partial \gamma} \int_{0}^{1} x J_{0}(\gamma x) dx = \frac{2}{\gamma^{2}} J_{0}(\gamma)$$

$$\int_{0}^{1} x J_{1}(\gamma x) J_{1}(\mu x) dx = \frac{x}{\gamma^{2} - \mu^{2}} [\mu J_{1}(\gamma x) J_{0}(\mu x) - \gamma J_{1}(\mu x) J_{0}(\gamma x)]]_{0}^{1} = 0 \quad (\gamma \neq \mu)$$

$$\int_{0}^{1} x J_{1}^{2}(\gamma x) dx = -\frac{x}{\gamma} J_{1}(\gamma x) J_{0}(\gamma x) |_{0}^{1} + \frac{x^{2}}{2} [J_{1}^{2}(\gamma x) + J_{0}^{2}(\gamma x)]]_{0}^{1} = \frac{1}{2} J_{0}^{2}(\gamma)$$

$$\int_{0}^{1} x^{2} J_{0}(\mu x) J_{1}(\gamma x) dx = \frac{1}{\mu} \frac{\partial}{\partial \mu} \mu \int_{0}^{1} x J_{1}(\mu x) J_{1}(\gamma x) dx =$$

$$= -\frac{x^{2}}{\gamma^{2} - \mu^{2}} [\mu J_{1}(\gamma x) J_{1}(\mu x) + \gamma J_{0}(\gamma x) J_{0}(\mu x)]]_{0}^{1} + \frac{2\gamma x}{(\gamma^{2} - \mu^{2})^{2}} [\gamma J_{1}(\gamma x) J_{0}(\mu x) - -\mu J_{1}(\mu x) J_{0}(\gamma x)]]_{0}^{1} = \frac{\gamma}{\mu^{2} - \gamma^{2}} J_{0}(\gamma) J_{0}(\mu x) - -\mu J_{1}(\mu x) J_{0}(\gamma x) J_{0}(\mu x)]]_{0}^{1} = \frac{\gamma}{\mu^{2} - \gamma^{2}} J_{0}(\gamma) J_{0}(\mu x)$$

$$\int_{0}^{1} x^{2} J_{0}(\gamma x) J_{1}(\gamma x) dx = \frac{J_{1}^{2}(\gamma)}{2\gamma} = 0$$

$$Ip \pi \times \neq 0$$

$$\int_{0}^{1} x^{3} J_{0}(\gamma x) J_{0}(x x) dx = \frac{1}{\gamma} \frac{\partial}{\partial \gamma} \gamma \int_{0}^{1} x^{2} J_{1}(\gamma x) J_{0}(x x) dx = \frac{2(\gamma^{2} + \kappa^{2})}{(\gamma^{2} - \kappa^{2})^{2}} J_{0}(\gamma) J_{0}(x)$$

$$\sigma_{n, i, p} = \int_{0}^{1} x^{2} J_{1}(\gamma x) J_{0}(\mu x) J_{0}(x x) dx, \quad \varepsilon_{n, i, p} = \int_{0}^{1} x J_{1}(\gamma x) J_{1}(\mu x) J_{0}(x x) dx$$

Приводим значения двух последних интегралов $\sigma_{n,i,p}$ и $\varepsilon_{n,i,p}$, вычисленных для конкретных $\gamma = \alpha_n, \mu = \alpha_i, \varkappa = \alpha_p$

$\varepsilon = 0.0143$,	$\sigma = -0.0106$,	$\gamma = \mu = \varkappa = 3.83$
$\epsilon = 0.0356$,	$\sigma = 0.0006$,	$\gamma = \mu = \kappa = 7.015$
$\epsilon = -0.0149$,	$\sigma = 0.0017$,	$\gamma = \mu = 3.83, \varkappa = 7.015$
$\varepsilon = 0.0203$,	$\sigma = 0.0017$,	$\gamma = \varkappa = 3.83, \ \mu = 7.015$
$\epsilon = 0.0309$,	$\sigma = -0.00263$,	$\gamma = \kappa = 7.015, \ \mu = 3.83$
$\epsilon = 0.0309$,	$\sigma = -0.0082,$	$\gamma = 3.83, \mu = \varkappa = 7.015$
$\varepsilon = 0.0203$,	$\sigma = -0.0005$,	$\gamma = 7.015, \ \mu = \varkappa = 3.83$
$\varepsilon = 0.0137$,	$\sigma = -0.00263$,	$\gamma = \mu = 7.015, \ \varkappa = 3.83$

Подставляя при различных κ значения приведенных выше интегралов в (9), получаем n + 1 уравнений для определения фупкций f_0, f_n

$$f_{0}^{\prime\prime\prime} + 2f_{0}f_{0}^{\prime\prime} - f_{0}^{\prime 2} + 1 = -\sum_{n} (f_{n}^{\prime\prime\prime} + 2f_{0}f_{n}^{\prime\prime} + 2f_{0}^{\prime}f_{n}^{\prime} - 2f_{0}^{\prime\prime}f_{n} - 2f_{0}^{\prime\prime}f_{n}^{\prime} - 2f_{0}^{\prime}f_{n}^{\prime} - 2f_{0}^$$

$$f_{0}^{\prime\prime\prime} + 2f_{0}f_{0}^{\prime\prime} - f_{0}^{\prime2} + 1 - \frac{1}{2} \sum_{n \neq p} \frac{\alpha_{p}^{2}}{\alpha_{p}^{2} - \alpha_{n}^{2}} J_{0}(\alpha_{n}) \left(f_{n}^{\prime\prime\prime} + 2f_{0}f_{n}\right) + \sum_{n \neq p} \frac{\alpha_{p}^{2}(\alpha_{n}^{2} + \alpha_{p}^{2})}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime}f_{n}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{n}^{2} - \alpha_{n}^{2})^{2}} J_{0}(\alpha_{n}) \left(f_{0}^{\prime}f_{n}^{\prime} - f_{0}^{\prime} - A_{1}\right) + \frac{\alpha_{p}^{2}}{(\alpha_{$$

$$+\sum_{n\neq p} \frac{a_{p} (a_{n}^{2} + a_{p}^{2})}{(a_{n}^{2} - a_{p}^{2})^{2}} J_{0}(a_{n}) (f_{0}'f_{n}' - f_{0}''f_{n} - A_{1}) + \frac{a_{p}^{2}}{12} J_{0}(a_{p}) (f_{0}'f_{p}' - f_{p}f_{0}'' - A_{1}) = \frac{1}{2} \sum_{i,n} \frac{a_{p}^{2}}{a_{n}} \frac{1}{J_{0}(a_{n})} (f_{n}'f_{i}' - f_{i}f_{n}'' - A_{1}^{2}) \sigma_{n,i,p} - \frac{1}{2} \sum_{i,n} \frac{a_{p}^{2}}{a_{n}a_{i}} \frac{1}{J_{0}(a_{p})} (f_{i}'f_{0}' - A_{1}^{2}) \varepsilon_{n,i,p} \quad (p=1,2,...n)$$
(11)

Для решения приведенной системы уравнений используются граничные условия (6). Практическая сходимость рядов в (10), (11), как показали дальнейшие расчеты, достаточно высока, поэтому при приближенном решении можно ограничиться двумя членами указанных рядов. Система (10), (11) при n, i = 1, 2 имеет вид

$$f_{0}''' - f_{0}'^{2} + 2f_{0}f_{0}'' + 1 = 0.44(f_{0}'f_{1}' - f_{0}''f_{1} - A_{1}) - 0.76(f_{0}'f_{2}' - f_{0}''f_{2})) - 0.063(f_{1}'^{2} - A_{1}^{2}) - 0.433f_{1}'f_{2}' + 0.078f_{1}f_{2}'' - 0.012f_{2}f_{1}''$$
(12)

$$f_{4}''' - (2.16f_{0}' - 0.114f_{1}' - 0.7f_{2}')f_{1}' + (2f_{0} + 0.46f_{1})f_{1}'' + + 2.16f_{0}''f_{1} + (2.16A_{1} - 0.114A_{1}^{2}) = -2.8(f_{0}'f_{2}' - f_{0}''f_{2})$$
(13)

$$f_{2}'' - (2.85f_{2}' + 2.74f_{1} + 0.41f_{2}')f_{2}' + (2f_{0} + 1.7f_{1})f_{1}'' + 2.85f_{0}''f_{2} = = 0.625(f_{0}'f_{1}' - f_{0}''f_{1} - A_{1}) + 0.86(f_{1}'^{2} - f_{1}f_{1}'' - A_{1}^{2}) + 0.3(f_{1}'^{2} - A_{1}^{2}).$$
(14)

На фигуре, *a*, *б* представлены результаты приближенного решения уравнений (12) — (14) для $A_1 = 0.5$ и 1.0, проведенного методом итераций на электронно-моделирующей машине ЭМУ-10. На фигуре, *в* приведены результаты расчета распреде-

ления напряжения трения вдоль преграды в окрестности критической точки на участке $0 \leqslant x \leqslant 1$ по формуле

$$\tau^* = \frac{\tau_w}{(\tau_w)_{\Omega=0}} = \frac{1}{x \left[f_0''(0) \right]_{\Omega=0}} \left[x f_0''(0) - \sum_{n=1,2} \frac{1}{\alpha_n} f_n''(0) J_1(\alpha_n x) \right]$$
(15)

где индекс Ω = 0 соответствует случаю натекания на преграду безвихревого потока. Из последнего графика следует, что завихренность набегающего потока вызывает уменьшение напряжения трения вблизи критической точки; при удалении от крити-

а — график функций f_n (n = 1, 2) в разложенам $(7): 1 - (f_1), 2 - (f_1'), 3 - (f_1''), 4 - (f_2), 5 - (f_2'), 6 - (f_2'')$ при $A_1 = 0.5; 7 - (f_1), 8 - (f_1'), 9 - (f_1''), 10 - (f_2), 11 - (f_2'), 12 - (f_2'')$ при $A_1 = 1.0$ 6 — график функции f_0 в разложении $(7): 1 - (f_0), 2 - (f_0'), 3 - (f_0'')$ при $A_1 = 0; 4 - (f_0'), 5 - (f_0'')$ при $A_1 = 0.5; 6 - (f_0'), 7 - (f_0'')$ при $A_1 = 1.0$

е — распределение напряжения трения вдоль преграды на участке $0\leqslant x\leqslant 1:\; 1-(\tau^*)$ при $A_1=0.5,\; 2-(\tau^*)$ при $A_1=1.0$

ческой точки напряжение трения возрастает. Согласно (15) напряжение трения меняется вдоль преграды периодически, чередование локального уменьшения и увеличения τ_w свидетельствует о наличии периодически распределенных вихрей вблизи преграды. Средняя по преграде величина напряжения трения (расстояние, на котором производится осреднение, достаточно велико по сравнению с длиной волны λ_1) превышает τ_w для безвихревого потока при $A_1 = 0.5$ в 1.11, а при $A_1 = 1.0$ в 1.26 раза.

Поступило 15 I 1969

ЛИТЕРАТУРА

1. Kueth A. M., Willmarth W. W. Stagnation point fluctuation on a body of revolution. Phys. Fluids, 1959, vol. 2, No. 6, p. 714.

2. Шлихтинг Г. Теория пограничного слоя. М., Изд-во иностр. лит., 1956.