ТЕЧЕНИЕ ВИХРЕВОГО ПОТОКА В ОКРЕСТНОСТИ КРИТИЧЕСКОИ ТОЧКИ

И. А. БЕЛОВ, Л. И. ПУБ

(Ленинград)
Исследуется төчение в окрестности критической точки преграды осесимметричного потока вязкой несжимаемой жидкости, когда в набөгающий поток введены стационарные вихри, ориентированные в направлении угловой координаты. Приводится решөние уравнения переноса вихря в случав внешнего потока, содержащего один вихрь наибольшей величины в низкочастотной части спектра. На основе использования конечного интегрального преобразования Ханкеля задача сведена к решению системы обыкновенных дифференциальных уравнений. Показано, что достаточно большой по величине вихрь может существенно влиять на структуру вязкого течения вблизи преграды.

Рассмотрим стационарное осесимметричное течение вязкой несжимаемой жидкости в цилиндрических координатах ξ, φ, ζ. Набегающий поток ограничен бесконечной плоской преградой с критической $\xi=0, \zeta=0$. Уравнения, определяющие течение жидкости, запишем в виде

$$
\begin{gather*}
v_{r} \frac{\partial \Omega}{\partial r}+v_{z} \frac{\partial \Omega}{\partial z}-\frac{v_{r} \Omega}{r}=\Delta \Omega-\frac{1}{r^{2}} \Omega \tag{1}\\
\Omega \equiv \Omega_{\varphi}=\frac{\partial v_{r}}{\partial z}-\frac{\partial v_{z}}{\partial r}, \quad v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial z}, \quad v_{z}=-\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{2}\\
r=\left(\frac{\beta}{v}\right)^{1 / 2} \xi, \quad z=\left(\frac{\beta}{v}\right)^{1 / 2} \zeta, \quad v_{r}=\frac{v_{\xi}}{(\beta v)^{1 / 2}}, \\
v_{z}=\frac{v_{\xi}}{(\beta v)^{1 / 2}}, \quad \Omega(r, z)=\frac{\Omega(\xi, \zeta)}{\beta}
\end{gather*}
$$

Здесь ψ - функция тока, β - временная постоянная в окрестности критической точки, v - кинематическая вязкость.

Известно точное решение (1), (2) для случая безвихревого набегающего потока [${ }^{2}$]. В отличие от $\left[{ }^{2}\right]$ предположим, чго набегающий на преграду поток содержит спектр вихрей, распределенных по координате r с длинами волн $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, причем λ_{1} - наибольшая или основная длина волны спектра.

На участке $0 \leqslant r \leqslant 1 / 2 \lambda_{1}$ распределение вихрей представим в виде

$$
\begin{equation*}
\Omega=-\sum_{n=1}^{\infty} A_{n} k_{n} z J_{1}\left(k_{n} r\right) \quad\left(k_{n}=\frac{2 \alpha_{n}}{\lambda_{1}}\right) \tag{3}
\end{equation*}
$$

Здесь $\alpha_{n}-n$-й корень уравнения $J_{1}(r)=0$. Тогда функция тока набегающего потока запишется так:

$$
\begin{equation*}
\psi(r, z)=r^{2} z-\sum_{n=1}^{\infty} \frac{1}{k} A_{n} r z J_{1}\left(k_{n} r\right) \tag{4}
\end{equation*}
$$

В (4) первый член представляет собой функцию тока невозмущенного движения; второй - функцию тока возмущающего движения. Задание Ω, ψ в набегающем потоке в форме (3), (4) позволяет рассматривать A_{n} как отношение величины n-го вихря спектра к средней величине вихря в вязком слое из-за касательных напряжений. Для того чтобы завихренность набегающего потока существенно влияла на структуру вязкого течения вблизи преграды, спектр вихрей должен содержать по крайней мере один вихрь с величиной A порядка единицы. Число k_{n} может рассматриваться как безразмерное волновое число n-го вихря. По определению волнового числа произведение $k_{n} \lambda_{n}$ есть постоянная величина для рассма́триваемого участка $\left[0,1 / 2 \lambda_{1}\right]$. Отсюда для определения длины волны n-го вихря спектра имеем соотношение $k_{n} \lambda_{n}=k_{1} \lambda_{1}=$ const.

Учитывая (4), решение (1), (2) естественно искать в виде

$$
\begin{equation*}
\psi=r^{2} f_{0}(z)-\sum_{n=1}^{\infty} \frac{1}{k_{n}} f_{n}(z) r J_{1}\left(k_{n} r\right) \tag{5}
\end{equation*}
$$

Знак перед суммой в (5) связан с направлением вращения первого от оси z вихря. Знак минус указывает на направление вращения по часовой стрелке.

Рассмотрим стучай, когда набегающий поток содержит один вихрь наибольшей величины (величины остальных вихрей пренебрежимо малы). Тогда, сопоставляя выражения (4) и (5), граничные условия для функций f_{0} и f_{n} запишем в виде

$$
\begin{gathered}
f_{0}(0)=f_{0}^{\prime}(0)=0, \quad f_{0}^{\prime}(\infty)=1 ; \quad f_{1}(0)=f_{1}^{\prime}(0)=0, \quad f_{1}^{\prime}(\infty)=A_{1}(6) \\
f_{n}(0)=f_{n}^{\prime}(0)=0, \quad f_{n}^{\prime}(\infty)=0 \\
(n=2,3, \ldots)
\end{gathered}
$$

Отметим, что, несмотря на характер граничных условий ($A_{n}=0$ для всех $n \neq 1$), сохранение бесконечного числа членов в (5) необходимо вследствие нелинейности уравнения (1).

В предположении, что (5) является решением (1), (2), ряд, входящий в (5), сходится, так как по построению это - ряд Фурье - Бесселя для возмущающего движения. Анализ ограничим рассмотрением случая, когда основная длина волны достаточно велика, т. е. когда волновое число $k_{1} \& 1$. Как показано в работе [${ }^{1}$], посвященной изучению турбулентных характеристик потока в окрестности критической точки, наибольшая часть турбулентной энергии концентрируется именно в низкочастотных компонентах вихря.

Если подставить (5) в уравнение (1) и пренебречь членами, содержащими $k_{n}{ }^{2}$, то полученное выражение после интегрирования по y от 0 до ∞ с учетом граничных условий (6) имеет вид

$$
\begin{align*}
& r^{2}\left(f_{0}^{\prime \prime \prime}+2 f_{0} f_{0}-f_{0}^{\prime 2}+1\right)-\sum_{n}\left(f_{n}^{\prime \prime \prime}+2 f_{0} f_{n}^{\prime \prime}\right) \frac{1}{k_{n}} r J_{1}\left(k_{n} r\right)+ \\
+ & \sum_{n}\left(f_{0}^{\prime} f_{n}{ }^{\prime}-f_{0}{ }^{\prime \prime} f_{n}-A_{1}\right) r^{2} J_{0}\left(k_{n} r\right)-\sum_{n, i} \frac{1}{k_{n}}\left(f_{n}^{\prime} f_{i}^{\prime}-f_{i} f_{n}^{\prime \prime}-A_{1}^{2}\right) \times \\
\times & r J_{0}\left(k_{i} r\right) J_{1}\left(k_{n} r\right)+\sum_{n, i} \frac{1}{k_{i} k_{n}}\left(f_{i}^{\prime} f_{n}^{\prime}-A_{1}^{2}\right) J_{1}\left(k_{i} r\right) J_{1}\left(k_{n} r\right) \equiv L(r, z)=0 \tag{7}
\end{align*}
$$

Суммирование по n, i в (7) производится для таких n, i, для которых условие $k_{n}, k_{i} \preccurlyeq 1$ еще соблюдается. Отметим, что при $f_{n} \equiv 0$ выражение
(7) сводится к известному уравнению относительно f_{0}, описывающему течение в окрестности критической точки в случае безвихревого набегающего потока [${ }^{2}$].

Для решения задачи воспользуемся формулой конечного преобразования Ханкеля, применяя ее к выражению $L(r, z)$ на участке $\left[0, \frac{1}{2} \lambda_{1}\right]$

$$
\begin{equation*}
\int_{0}^{1 / 2 \lambda_{1}} L(r, z) r J_{0}\left(k_{p} r\right) d r=0, \quad k_{p}=\frac{2 \alpha_{p}}{\lambda_{1}} \quad(p=0,1,2, \ldots n) \tag{8}
\end{equation*}
$$

В (8) произведем замену переменных

$$
r=\frac{1}{2} \lambda_{1} x, \quad 0 \leqslant x \leqslant 1
$$

и введем обозначения $\alpha_{r}=\gamma, \alpha_{i}=\mu, \alpha_{p}=x$. При этом по определению волнового числа $J_{1}(\gamma)=J_{1}(\mu)=J_{1}(x)=0$. Тогда с учетом (7) интеграл (8) примет вид

$$
\begin{equation*}
\int_{0}^{1} L(x, z) x J_{0}(x x) d x=0 \quad(x=0,3.83,7.01,10.17, \ldots) \tag{9}
\end{equation*}
$$

При различных x отсюда имеем
при $x=0$

$$
\begin{aligned}
& \int_{0}^{1} \gamma x^{2} J_{1}(\gamma x) d x=-\gamma \frac{\partial}{\partial \gamma} \int_{0}^{1} x J_{0}(\gamma x) d x=-J_{0}(\gamma) \\
& \int_{0}^{1} x^{3} J_{0}(\gamma x) d x=-\frac{1}{\gamma} \frac{\partial}{\partial \gamma} \gamma \frac{\partial}{\partial \gamma} \int_{0}^{1} x J_{0}(\gamma x) d x=\frac{2}{\gamma^{2}} J_{0}(\gamma)
\end{aligned}
$$

$$
\left.\int_{0}^{1} x J_{1}(\gamma x) J_{1}(\mu x) d x=\frac{x}{\gamma^{2}-\mu^{2}}\left[\mu J_{1}(\gamma x) J_{0}(\mu x)-\gamma J_{1}(\mu x) J_{0}(\gamma x)\right] \right\rvert\, 0^{1}=0 \quad(\gamma \neq \mu)
$$

$$
\int_{0}^{1} x J_{1}^{2}(\gamma x) d x=-\frac{x}{\gamma} J_{1}(\gamma x) J_{0}(\gamma x)\left|0^{1}+\frac{x^{2}}{2}\left[J_{1}{ }^{2}(\gamma x)+J_{0}{ }^{2}(\gamma x)\right]\right| 0^{1}=\frac{1}{2} J_{0}{ }^{2}(\gamma)
$$

$$
\begin{aligned}
& \int_{0}^{1} x^{2} J_{0}(\mu x) J_{1}(\gamma x) d x=\frac{1}{\mu} \frac{\partial}{\partial \mu} \mu \int_{0}^{1} x J_{1}(\mu x) J_{1}(\gamma x) d x= \\
& \left.=-\frac{x^{2}}{\nu^{2}-\mu^{2}}\left[\mu J_{1}(\gamma x) J_{1}(\mu x)+\gamma J_{0}(\gamma x) J_{0}(\mu x)\right] \right\rvert\, 0^{1}+\frac{2 \gamma x}{\left(\gamma^{2}-\mu^{2}\right)^{2}}\left[\gamma J_{1}(\gamma x) J_{0}(\mu x)-\right. \\
& \left.-\mu J_{1}(\mu x) J_{0}(\gamma x)\right] \left\lvert\, 0^{1}=\frac{\gamma}{\mu^{2}-\gamma^{2}} J_{0}(\gamma) J_{0}(\mu)\right. \\
& \int_{0}^{1} x^{2} J_{0}(\gamma x) J_{1}(\gamma x) d x=\frac{J_{1}{ }^{2}(\gamma)}{2 \gamma}=0
\end{aligned}
$$

при $x \neq 0$

$$
\int_{0}^{1} x^{3} J_{0}(\gamma x) J_{0}(x x) d x=\frac{1}{\gamma} \frac{\partial}{\partial \gamma} \gamma \int_{0}^{1} x^{2} J_{1}(\gamma x) J_{0}(x x) d x=\frac{2\left(\gamma^{2}+x^{2}\right)}{\left(\gamma^{2}-x^{2}\right)^{2}} J_{0}(\gamma) J_{0}(x)
$$

$$
\sigma_{n, i, p}=\int_{0}^{1} x^{2} J_{1}(\gamma x) J_{0}(\mu x) J_{0}(x x) d x, \quad \varepsilon_{n, i, p}=\int_{0}^{1} x J_{1}(\gamma x) J_{1}(\mu x) J_{0}(x x) d x
$$

Приводим значения двух последних интегралов $\sigma_{n, i, p}$ и $\varepsilon_{n, i, p}$, вычисленных для конкретных $\gamma=\alpha_{n}, \mu=\alpha_{i}, x=\alpha_{p}$

$\varepsilon=0.0143$,	$\sigma=-0.0106$,	$\gamma=\mu=x=3.83$
$\varepsilon=0.0356$,	$\sigma=0.0006$,	$\gamma=\mu=x=7.015$
$\varepsilon=-0.0149$,	$\sigma=0.0017$,	$\gamma=\mu=3.83, x=7.015$
$\varepsilon=0.0203$,	$\sigma=0.0017$,	$\gamma=x=3.83, \mu=7.015$
$\varepsilon=0.0309$,	$\sigma=-0.0263$,	$\gamma=x=7.015, \mu=3.33$
$\varepsilon=0.0309$,	$\sigma=-0.0082$,	$\gamma=3.83, \mu=x=7.015$
$\varepsilon=0.0203$,	$\sigma=-0.005$,	$\gamma=7.015, \mu=x=3.83$
$\varepsilon=0.0137$,	$\sigma=-0.00263$,	$\gamma=\mu=7.015, x=3.83$

Подставляя при различных x значения приведенных выше интегралов в (9), получаем $n+1$ уравнений для определения фупкций f_{0}, f_{n}

$$
\begin{align*}
& f_{0}^{\prime \prime \prime}+2 f_{0} f_{0}^{\prime \prime}-{f_{0}^{\prime 2}}^{\prime 2} 1=-\sum_{n}\left(f_{n}^{\prime \prime \prime}+2 f_{0} f_{n}^{\prime \prime}+2 f_{0}{ }^{\prime} f_{n}{ }^{\prime}-2 f_{0}^{\prime \prime} f_{n}-\right. \\
& \left.-2 A_{1}\right) \frac{4}{\alpha_{n}{ }^{2}} J_{0}\left(\alpha_{n}\right)+\sum_{n \neq i} \frac{4}{\alpha_{i}^{2}-\alpha_{n}^{2}}\left(f_{n}^{\prime} f_{i}^{\prime}-f_{i} f_{n}^{\prime \prime}\right) J_{0}\left(\alpha_{n}\right) J_{0}\left(\alpha_{i}\right)- \\
& -\sum_{n} \frac{2}{\alpha_{n}^{2}}\left(f_{n}{ }^{2}-2 f_{n} f_{n}^{\prime \prime}-A_{1}{ }^{2}\right) J_{0}{ }^{2}\left(\alpha_{n}\right) \tag{10}\\
& f_{0}^{\prime \prime \prime}+2 f_{0} f_{0}^{\prime \prime}-f_{0}^{\prime 2}+1-\frac{1}{2} \sum_{n \neq p} \frac{\alpha_{p}{ }^{2}}{\alpha_{p}^{2}-\alpha_{n}{ }^{2}} J_{0}\left(\alpha_{n}\right)\left(f_{n}^{\prime \prime \prime}+2 f_{0} f_{n}\right)+ \\
& +\sum_{n \neq p} \frac{\alpha_{p}{ }^{2}\left(\alpha_{n}{ }^{2}+\alpha_{p}{ }^{2}\right)}{\left(\alpha_{n}{ }^{2}-\alpha_{p}{ }^{2}\right)^{2}} J_{0}\left(\alpha_{n}\right)\left(f_{0}{ }^{\prime} f_{n}{ }^{\prime}-f_{0}{ }^{\prime \prime} f_{n}-A_{1}\right)+\frac{\alpha_{p}{ }^{2}}{12} J_{0}\left(\alpha_{p}\right)\left(f_{0}{ }^{\prime} f_{p}{ }^{\prime}-\right. \\
& \left.-f_{p} f_{0}{ }^{\prime \prime}-A_{1}\right)=\frac{1}{2} \sum_{i, n} \frac{\alpha_{p}{ }^{2}}{\alpha_{n}} \frac{1}{J_{0}\left(\alpha_{n}\right)}\left(f_{n}{ }^{\prime} f_{i}^{\prime}-f_{i} f_{n}{ }^{\prime \prime}-A_{1}{ }^{2}\right) \sigma_{n, i, p}- \\
& -\frac{1}{2} \sum_{i, n} \frac{\alpha_{p}{ }^{2}}{\alpha_{n} \alpha_{i}} \frac{1}{J_{0}\left(\alpha_{p}\right)}\left(f_{i}^{\prime} f_{0}{ }^{\prime}-A_{1}{ }^{2}\right) \varepsilon_{n, i, p} \quad(p=1,2, \ldots n) \tag{11}
\end{align*}
$$

Для решөния приведенной системы уравнений используются граничные условия (6). Практическая сходимость рядов в (10), (11), как показали дальнейшие расчеты, достаточно высока, поэтому при приближенном решении можно ограничиться двумя членами указанных рядов. Система (10), (11) при $n, i=1,2$ имеет вид

$$
\begin{align*}
& \left.f_{0}{ }^{\prime \prime \prime}-f_{0}{ }^{2}+2 f_{0} f_{0}{ }^{\prime \prime}+1=0.44\left(f_{0} f_{1} f_{1}-f_{0}{ }^{\prime \prime} f_{1}-A_{1}\right)-0.76\left(f_{0}{ }^{\prime} f_{2}{ }^{\prime}-f_{0}{ }^{\prime \prime} f_{2}\right)\right)- \\
& -0.063\left(f_{1}{ }^{\prime 2}-A_{1}{ }^{2}\right)-0.433 f_{1}^{\prime} f_{2}{ }^{\prime}+0.078 f_{1} f_{2}{ }^{\prime \prime}-0.012 f_{2} f_{1}^{\prime \prime} \tag{12}\\
& f_{1}{ }^{\prime \prime \prime}-\left(2.16 f_{0}{ }^{\prime}-0.114 f_{1}{ }^{\prime}-0.7 f_{2}^{\prime}\right) f_{1}{ }^{\prime}+\left(2 f_{0}+0.46 f_{1}\right) f_{1}{ }^{\prime \prime}+ \\
& +2.16 f_{0}{ }^{\prime \prime} f_{1}+\left(2.16 A_{1}-0.114 A_{1}{ }^{2}\right)=-2.8\left(f_{0}{ }^{\prime} f_{2}{ }^{\prime}-f_{0}{ }^{\prime \prime} f_{2}\right) \tag{13}\\
& f_{2}{ }^{\prime \prime}-\left(2.85 f_{2}{ }^{\prime}+2.74 f_{1}+0.41 f_{2}{ }^{\prime}\right) f_{2}{ }^{\prime}+\left(2 f_{0}+1.7 f_{1}\right) f_{1}{ }^{\prime \prime}+2.85 f_{0}{ }^{\prime \prime} f_{2}= \\
& =0.625\left(j_{0}^{\prime} f_{1}{ }^{\prime}-f_{0}^{\prime \prime} f_{1}-A_{1}\right)+0.86\left(f_{1}^{\prime 2}-f_{1} f_{1}{ }^{\prime \prime}-A_{1}{ }^{2}\right)+0.3\left(f_{1}{ }^{\prime 2}-A_{1}{ }^{2}\right) . \tag{14}
\end{align*}
$$

На фигуре, a, 6 представлены результаты приближенного решения уравнений (12) - (14) для $A_{1}=0.5$ и 1.0, проведенного методом итераций на әлектронно-моделирующей машине ЭМУ-10. На фигуре, в приведены результаты расчета распреде-

ления напряжения трөния вдоль преграды в окрестности критической точки на участке $0 \leqslant x \leqslant 1$ по формуле

$$
\begin{equation*}
\tau^{*}=\frac{\tau_{w}}{\left(\tau_{w}\right)_{\Omega=0}}=\frac{1}{x\left[f_{0}^{\prime \prime}(0)\right]_{\Omega=0}}\left[x f_{0}^{\prime \prime}(0)-\sum_{n=1,2} \frac{1}{\alpha_{n}} f_{n}^{\prime \prime}(0) J_{1}\left(\alpha_{n} x\right)\right] \tag{15}
\end{equation*}
$$

где индекс $\Omega=0$ соответствует случаю натекания на преграду безвихревого потока.
Из последнего графика следует, что завихренность набегающего потока вызывает уменьшение напряжения трения вблизи критической точки; при удалении от крити-

a - график функций $f_{n}(n=1,2)$ в разложении (7): $1-\left(f_{1}\right), 2$ - $\left(f_{1}{ }^{\prime}\right)$, $3-\left(f_{1}^{\prime \prime}\right), 4-\left(f_{2}\right), 5-\left(f_{2}^{\prime}\right), 6-\left(f_{2}^{\prime \prime}\right)$ при $A_{1}=0.5 ; 7-\left(f_{1}\right), 8-\left(f_{1}^{\prime}\right)$, 9 - $\left(f_{1}^{\prime \prime}\right), 10$ - $\left(f_{2}\right), 11-\left(f_{2}^{\prime}\right), 12-\left(f_{2}{ }^{\prime \prime}\right)$ при $A_{1}=1.0$
б- график функции f_{0} в разложении (7): $1 \frac{-1}{-}\left(f_{0}\right), 2$ ($\left.f_{0}{ }^{\prime}\right), 3$ ($f_{0}{ }^{\prime \prime}$) при $A_{1}=0 ; 4-\left(f_{0}{ }^{\prime}\right), 5-\left(f_{0}{ }^{\prime \prime}\right)$ при $A_{1}=0.5 ; 6-\left(f_{0}{ }^{\prime}\right), 7-\left(f_{0}^{\prime \prime}\right)$ при $A_{1}=1.0$
в - распределение напряжения трения вдоль преграды на участке $0 \leqslant$ $\leqslant x \leqslant 1: 1-\left(\tau^{*}\right)$ при $A_{1}=0.5,2-\left(\tau^{*}\right)$ при $A_{1}=1.0$

ческой точки напряжение трения возрастает. Согласно (15) напряжение трения меняется вдоль преграды периодически, чередование локального уменьшения и увеличения τ_{w} свидетельствует о наличии периодически распределенных вихрей вблизш преграды. Средняя по преграде величина напряжения трения (расстояние, на котором производится осреднение, достаточно велико по сравнению с длиной волны λ_{1}) превышает τ_{w} для безвихревого потока при $A_{1}=0.5$ в 1.11 , а при $A_{1}=1.0$ в 1.26 раза.

Поступило 15 I 1969

ЛИТЕРАТУРА

1. Kueth A. M., Willmarth W. W. Stagnation point fluctuation on a body of revolution. Phys. Fluids, 1959, vol. 2, No. 6, p. 714.
2. ШлихтингГ. Теория пограничного слоя. М., Изд-во иностр. лит., 1956.
