ДВИЖЕНИЕ ДВУХ КРУГОВЬХ ЦИЛИНДРОВ В ИДЕАЛЬНОИ жидкости

B. 10. MAЗУР

(Oдecca)
Решение задачи о движении двух круговых цилиндров в идеальной жидкости проводилось ранее приближенными методами с погрешностью, возрастающей по мере приближения цилиндров друг к другу [1, 2]. В данной работе приводится точное решение задачи для произвольного движения цилиндров.

Определены потендиал скорости, кинетическая әнергия и силы, действующие на дилиндры со стороны жидкости.

1. Рассмотрим движение двух дилиндров с радиусами a_{1} и a_{2} в идеальной жидкости, которая покоится на бесконечности. Берем плоскость $x y$, перпендикулярную к образующим цилиндров. Пусть ось x в рассматриваемый момент времени совпадает с линией, соединяющей цептры окружностей C_{1} и C_{2} (фигура). Начало координат помещаем в центре первой окружности, тогда комплексный потенциал абсолютного течения представляется выражением

$$
\begin{align*}
& W=-\frac{a_{1}{ }^{2}}{z}\left(U_{1}+i V_{1}\right)+U_{1} f_{11}(z)+ \\
& +V_{1} f_{12}(z)-\frac{a_{2}{ }^{2}}{z-r}\left(U_{2}+i V_{2}\right)+ \\
& \quad+U_{2} f_{21}(z)+V_{2} f_{22}(z) \tag{1.1}
\end{align*}
$$

Здесь $U_{1}, V_{1}, U_{2}, V_{2}$ - составляющие скорости цилиндров, r - расстояние между цевтрами окружностей, $f_{i \hbar}$ - аналитические функции в области D, ограниченной двумя круговыми контурами. Функции $f_{i k}$ удовлетворяют условиям

на окружности C_{1}
$\operatorname{Im} f_{11}=0, \quad \operatorname{Im} f_{12}=0, \quad \operatorname{Im} f_{21}=\operatorname{Im} \frac{a_{2}{ }^{2}}{z-r}, \quad \operatorname{Im} f_{22}=\operatorname{Re} \frac{a_{2}{ }^{2}}{z-r}+$ const
на окружности C_{2}
$\operatorname{Im} f_{11}=\operatorname{Im} \frac{a_{1}{ }^{2}}{z}, \quad \operatorname{Im} f_{12}=\operatorname{Re} \frac{a_{1}{ }^{2}}{z}+$ const, $\quad \operatorname{Im} f_{21}=0, \quad \operatorname{Im} f_{22}=0$
на бесконечности

$$
\begin{equation*}
d f_{i k} /\left.d z\right|_{z \rightarrow \infty}=0,\left.\quad f_{i k}\right|_{r \rightarrow \infty}=0 \tag{1.4}
\end{equation*}
$$

Используя методику работы [${ }^{3}$], находим

$$
\begin{gather*}
W=W_{1}+W_{2} \\
W_{1}=U_{1} W_{11}+V_{1} W_{12}, \quad W_{2}=U_{2} W_{21}+V_{2} W_{22} \tag{1.5}
\end{gather*}
$$

$$
\begin{gathered}
W_{11}=-\frac{a_{1}{ }^{2}}{z}+2 a_{1} \operatorname{sh} h_{11} \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-2 k h_{12}}}{\operatorname{sh} k h} \cos k \zeta_{1} \\
W_{12}=-\frac{a_{1}{ }^{2}}{z} i+2 a_{1} \operatorname{sh} h_{11} \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-2 k h_{12}}}{\operatorname{sh} k h} \sin k \zeta_{1} \\
W_{21}=-\frac{a_{2}{ }^{2}}{z-r}-2 a_{2} \operatorname{sh} h_{21} \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-2 k h_{22}}}{\operatorname{sh} k h} \cos k \zeta_{2} \\
W_{22}=-\frac{a_{2}{ }^{2}}{z-r} i-2 a_{2} \operatorname{sh} h_{21} \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-2 k h_{22}}}{\operatorname{sh} k h} \sin k \zeta_{2}
\end{gathered}
$$

Здесь

$$
\begin{gather*}
\zeta_{1}=-i \ln \frac{a_{1}-\beta_{1} z}{z-\beta_{1} a_{1}}, \quad \zeta_{2}=-i \ln \frac{a_{2}-\beta_{2}(r-z)}{r-z-\beta_{2} a_{2}} \tag{1.6}\\
\beta_{1}=\frac{r^{2}-a_{2}{ }^{2}+a_{1}{ }^{2}}{2 r a_{1}}+\left[\left(\frac{r^{2}-a_{2}{ }^{2}+a_{1}{ }^{2}}{2 r a_{1}}\right)^{2}-1\right]^{1 / 2} \\
\beta_{2}=\frac{r^{2}-a_{1}{ }^{2}+a_{2}{ }^{2}}{2 r a_{2}}+\left[\left(\frac{r^{2}-a_{1}{ }^{2}+a_{2}{ }^{2}}{2 r a_{2}}\right)^{2}-1\right]^{1 / 2} \\
h_{11}=\ln \beta_{1}, \quad h_{24}=\ln \beta_{2}, \quad h=\ln n \\
h_{12}=1 / 2 \ln n \beta_{1}, \quad h_{22}=1 / 2 \ln n \beta_{2}
\end{gather*}
$$

где n - модуль области D, определяемый соотношением

$$
\begin{equation*}
n=\frac{r^{2}-a_{1}{ }^{2}-a_{2}{ }^{2}}{2 a_{1} a_{2}}+\left[\left(\frac{r^{2}-a_{1}{ }^{2}-a_{2}{ }^{2}}{2 a_{1} a_{2}}\right)^{2}-1\right]^{1 / 2} \tag{1.7}
\end{equation*}
$$

Ряды в (1.5) сходятся при любых значениях $r>{ }^{\prime} a_{1}+a_{2}$. В частном случае, когда $a_{2} \rightarrow 0$, комплексный потенциал W принимает вид

$$
\begin{equation*}
\left.W\right|_{a_{\mathrm{s}} \rightarrow 0}=-a_{1}^{2} z^{-1}\left(U_{1}+i V_{1}\right) \tag{1.8}
\end{equation*}
$$

т. е. представляет собой потенциал движения цилиндра в неограниченной жидкости.
2. Кинетическая әнергия, заключенная в слое жидкости единичной высоты при движении дилиндров, можөт быть определена выражением

$$
\begin{align*}
T= & -\frac{1}{2} \rho a_{1} \int_{0}^{2 \pi} \varphi\left(U_{1} \cos \Theta_{1}+V_{i} \sin \Theta_{1}\right) d \Theta_{1}- \\
& -\frac{1}{2} \rho a_{2} \int_{0}^{2 \pi} \varphi\left(U_{2} \cos \Theta_{2}+V_{2} \sin \Theta_{2}\right) d \Theta_{2} \tag{2.1}
\end{align*}
$$

Здесь $\varphi=\operatorname{Re} W$ - граничное значөние потенциала скорости на окружностях C_{1} п C_{2}.

Из (1.5) находим
$\varphi=\left.\operatorname{Re} W\right|_{z=z_{1} e} i \Theta_{1}=\varphi\left(\Theta_{1}, \xi_{1}, \xi_{2}\right), \quad \varphi=\left.\operatorname{Re} W\right|_{z=r+a_{2} i} i \Theta_{2}=\varphi\left(\Theta_{2}, \xi_{1}, \xi_{2}\right)$
Далее, используя (1.6), нетрудно установить соотношения

$$
\Theta_{i}=f\left(\xi_{k}\right) \quad(i, k=1,2)
$$

6 Механнка жидкости и газа, N 6

При этом интегралы, входящие в (2.1), с применением теоремы о вычетах вычисляются точно

$$
\begin{gathered}
T=\frac{\rho \pi a_{1}{ }^{2}}{2} \mu_{1}\left(U_{1}{ }^{2}+V_{1}{ }^{2}\right)+\frac{\rho \pi a_{2}{ }^{2}}{2} \mu_{2}\left(U_{2}{ }^{2}+V_{2}{ }^{2}\right)- \\
-\rho \pi\left[\frac{a_{1}{ }^{2} a_{2}{ }^{2}}{r^{2}}+2\left(a_{1}{ }^{2} \operatorname{sh}^{2} h_{11}+a_{2}{ }^{2} \operatorname{sh}^{2} h_{21}\right) \sum_{h=1}^{\infty} k \operatorname{cth} k h e^{-2 k h}\right]\left(U_{1} U_{2}+V_{1} V_{2}\right)
\end{gathered}
$$

Здесь

$$
\begin{equation*}
\mu_{1}=1+4 \operatorname{sh}^{2} h_{111} \sum_{k=1}^{\infty} k \frac{e^{-k\left(2 h_{11}+h\right)}}{\operatorname{sh} k h}, \quad \mu_{2}=1+4 \operatorname{sh}^{2} h_{21} \sum_{k=1}^{\infty} k \frac{e^{-k\left(2 h_{21}+h\right)}}{\operatorname{sh} k h} \tag{2.2}
\end{equation*}
$$

Отсюда, используя соотношения (1.6), окончательно получаем

$$
\begin{equation*}
T=\lambda_{1}\left(U_{1}{ }^{2}+V_{1}{ }^{2}\right)+\lambda_{2}\left(U_{2}{ }^{2}+V_{2}{ }^{2}\right)+2 \lambda_{3}\left(V_{1} V_{2}-U_{1} U_{2}\right) \tag{2.3}
\end{equation*}
$$

Здесь

$$
\begin{gathered}
\lambda_{1}=\frac{\rho \pi a_{1}{ }^{2} \mu_{1}}{2}, \quad \lambda_{2}=\frac{\rho \pi a_{2}{ }^{2} \mu_{2}}{2}, \quad \lambda_{3}=\frac{\rho \pi a_{1}{ }^{2} a_{2}{ }^{2}}{r^{2}} \mu_{3} \\
\mu_{1}=1+\frac{r^{4}-2 r^{2}\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right)+\left(a_{2}{ }^{2}-a_{1}{ }^{2}\right)^{2}}{r^{2} a_{1}{ }^{2}} \sum_{k=1}^{\infty} k \frac{e^{-k\left\{\left(2 h_{11}+h\right)\right.}}{\operatorname{sh} k h} \\
\mu_{2}=1+\frac{r^{4}-2 r^{2}\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right)+\left(a_{2}{ }^{2}-a_{1}{ }^{2}\right)^{2}}{r^{2} a_{2}{ }^{2}} \sum_{k=1}^{\infty} k \frac{e^{-k\left(2 h_{21}+h\right)}}{\operatorname{sh} k h} \\
\mu_{3}, \mu_{4}=1+\frac{r^{4}-2 r^{2}\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right)+\left(a_{2}{ }^{2}-a_{1}{ }^{2}\right)^{2}}{a_{1}{ }^{2} a_{2}{ }^{2}} \sum_{k=1}^{\infty} k \operatorname{cth} k h t^{-2 k h}
\end{gathered}
$$

Рассмотрим частный случай, соответствующий движению цилиндра у стенки. Полагая $a_{1}=a_{2}=a, U_{1}=-U_{2}, V_{1}=V_{2}, r=2 b$, из (2.2) находим

$$
\begin{gather*}
T=\rho \pi a^{2}\left(U^{2}-V^{2}\right)\left(1+4 \operatorname{sh}^{2} h_{w} \sum_{h=1}^{\infty} \frac{e^{-4 k h_{w}}}{\operatorname{sh} 2 k h_{w}}+\frac{a^{2}}{4 b^{2}}+\right. \\
\left.+4 \operatorname{sh}^{2} h_{w} \sum_{k=1}^{\infty} k \operatorname{cth} 2 k h_{w} e^{-4 k h_{w}}\right) \quad\binom{h_{w}=\ln n_{w}=1 / 2 h}{n_{w}=b / a+\sqrt{b^{2} / a^{2}-1}} \tag{2.4}
\end{gather*}
$$

Здесь n_{w} - модуль области, ограниченной контуром сечения цилиндра и стенкой, b - расстояние от центра круга до стенки.

Разложим в ряд отношение $a^{2} / 4 b^{2}$. Принимая во внимание, что $h_{w}>0$, вмеем

$$
\begin{aligned}
& \frac{a^{2}}{4 b^{2}}=\frac{1}{4 \operatorname{ch}^{2} h_{w}}=-\operatorname{sh}^{2} h_{w} \frac{d}{d h_{w}} \frac{e^{-4 h_{w}}}{1-e^{-4 h_{w}}}= \\
&=-\operatorname{sh}^{2} h_{w} \frac{d}{d h_{w}} \sum_{k=1}^{\infty} e^{-4 k h_{w}}=4 \operatorname{sh}^{2} h_{w} \sum_{k=1}^{\infty} k e^{-4 k h_{w}}
\end{aligned}
$$

При этом соотношение (2.4) принимает вид

$$
T=2 T_{w}, \quad T_{w}=\frac{\rho \pi a^{2}}{2} \mu\left(U^{2}+V^{2}\right), \quad \mu=1+4 \operatorname{sh}^{2} h_{w} \sum_{k=1}^{\infty} k \frac{e^{3 k h_{w}}}{\operatorname{sh} k h_{w}}
$$

что совпадает с результатами [${ }^{3}$].
3. Определим силы, действующие на цилиндры со стороны жидкости.

При движении тел заданной формы в идеальной жидкости потенциал скорости, а следовательно, и кинетическая энергия жидкости полностью определяются обобщенными координатами тел q_{i} и обобщенными скоростями q_{i}^{*}. Ввиду этого жидкую среду можно рассматривать как систему с идеальными связями, имеющую ограниченное число степеней свободы, и силы, действующие на систему, вычислять с помощью уравнений Лагранжа второго рода

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial q_{i}{ }^{+}}-\frac{\partial T}{\partial q_{i}}=Q_{i} \tag{3.1}
\end{equation*}
$$

Здесь i - число степєней свободы движущихся тел, T - кинетическая энергия жидкости, Q_{i} - обобщенные силы, действующие на жидкость.

В рассматриваемом случае в качестве обобщенных координат принимаем

$$
q_{1}=-b_{1}, \quad q_{2}=y_{01}, \quad q_{3}=b_{2}, \quad q_{4}=y_{02}
$$

где $y_{0 i}$ - расстояние центров окружностей C_{1} и C_{2} от оси x (фигура). Тогда

$$
q_{1}^{\cdot}=U_{1}, \quad q_{2}^{\cdot}=V_{1}, \quad q_{3}^{*}=U_{2}, \quad q_{4}^{\cdot}=V_{2}
$$

Обобщенные силы могут быть представлены в виде

$$
Q_{1}=-X_{1}, \quad Q_{2}=-Y_{1}, \quad Q_{3}=-X_{2}, \quad Q_{4}=-Y_{2}
$$

Здесь X_{i}, Y_{i} - проекции главного вектора гидродинамических давлений, действующих на цилиндры.

Значения производных $\partial T / \partial q_{i}$ и $\partial T / \partial q_{i}^{*}$ вычисляем, используя (2.3). Окончательно получаем

$$
\begin{gather*}
X_{1}=-2 \lambda_{1} \frac{d U_{1}}{d t}+2 \lambda_{3} \frac{d U_{2}}{d t}-\left(2 U_{1} U_{2}-U_{1}^{2}+V_{1}^{2}\right) \frac{d \lambda_{1}}{d r}- \\
-\left(U_{2}^{2}+V_{2}^{2}\right) \frac{d \lambda_{2}}{d r}+2\left(U_{2}^{2}-V_{1} V_{2}\right) \frac{d \lambda_{3}}{d r} \\
Y_{1}=-2 \lambda_{1} \frac{d V_{1}}{d t}-2 \lambda_{3} \frac{d V_{2}}{d t}-2 V_{1}\left(U_{2}-U_{1}\right) \frac{d \lambda_{1}}{d r}-2 V_{2}\left(U_{2}-U_{1}\right) \frac{d \lambda_{3}}{d r} \\
X_{2}=-2 \lambda_{2} \frac{d U_{2}}{d t}+2 \lambda_{3} \frac{d U_{1}}{d t}+\left(2 U_{2} U_{1}-U_{2}^{2}+V_{2}^{2}\right) \frac{d \lambda_{2}}{d r}+ \\
+\left(U_{1}{ }^{2}+V_{1}^{2}\right) \frac{d \lambda_{1}}{d r}-2\left(U_{1}{ }^{2}-V_{1} V_{2}\right) \frac{d \lambda_{3}}{d r} \\
Y_{2}=-2 \lambda_{2} \frac{d V_{2}}{d t}-2 \lambda_{3} \frac{d V_{1}}{d t}-2 V_{2}\left(U_{2}-U_{1}\right) \frac{d \lambda_{2}}{d r}-2 V_{1}\left(U_{2}-U_{1}\right) \frac{d \lambda_{3}}{d r} \tag{3.2}
\end{gather*}
$$

Легко убедиться, что` соотношения (3.2) удовлетворяют равенствам

$$
\begin{align*}
\frac{d T}{d t} & =-X_{1} U_{1}-Y_{1} V_{1}-X_{2} U_{2}-Y_{2} V_{2} \tag{3.3}\\
\frac{d}{d t}\left(\frac{\partial T}{\partial U_{1}}+\frac{\partial T}{\partial U_{2}}\right) & =-X_{1}-X_{2}, \quad \frac{d}{d t}\left(\frac{\partial T}{\partial V_{1}}+\frac{\partial T}{\partial V_{2}}\right)=-Y_{1}-Y_{2}
\end{align*}
$$

Уравнения (3.3) представляют собой аналитическую запись теоремы об изменении кинетической энергии системы и закона количества движения.

Автор благодарит Н. С. Сторожука за помощь при выполнении данной работы,

Поступило 16 III 1970

ЛИТЕРАТУРА

1. Блох Э. Д., Гиневский Л. С. О движенни системы тел в идеальной жидкости. НТО судостроительной пром-ти им. Крылова, 1963, вып. 47.
2. Патарая H . Н. Применение метода конформного отображения $к$ решению задачи обтекания двух тел. Тр. Тбилисск. гос. ун-та, 1961, т. 84.
3. Мазур В. Ю. Движение кругового цилиндра вблизи вертикальной стенки. Изв. АН СССР, МЖГ, 1966, № 3.
