О ТРАНСЗВУКОВОМ ТЕЧЕНИИ ГАЗА В ОСЕСИММЕТРИЧНЫХ СОПЛАХ ЛАВАЛЯ С КРУТЫМИ СТЕНКАМИ

В. И. КИРЕЕВ, Ю. Б. ЛИФППЦ

(Москва)
В последнее время появилось большше количество работ [${ }^{1-5}$], в которых предлагаются различные численные методы решения как прямой, так и обратной задач расчета потока идеального газа в сопле Лаваля. Анализ приведөнных в них рөзультатов показывает, что, несмотря на двумерность получаемых полей течения, распределение давления по стенке и центральной линии тока мало отличается от значений, вычисленных при помощи гидравлической теории, в которой, как известно, поперечным распределением параметров пренебрегают.

Ниже проводится анализ численных результатов расчета течения газа в переходной области круглых сопел Јаваля с очень крутыми стенками, где параметры потока существенно меняются в поперечном направлении и их значения сильно отличаются от полученных в гидравлическом приближении.

1. В качестве объекта исследования было выбрано сопло, верхняя половина продольного сечения которого изображена на фиг. 1. За единицу длины взят радиус критического сечения. Образующая стенки сопла в этом сечении является окружностью радиуса r_{0}. Входная часть состоит из комбинации конуса с углом наклона образующей α и цилиндра радиуса 4 , сопряженных дугой окружности радиуса 1. Выхлопная часть сопла представляет собой конус, образующая которого наклонена под углом $\beta=20^{\circ}$ $\boldsymbol{к е г о ~ о с и . ~}$

В проведенной серии расчетов газ считался совершенным с неизменным отношением удельных теплоемкостей, равным 1.4. Изменялись только значения угла α и радиуса r_{0} образующей горловины сопла в пределах $60^{\circ} \leqslant \alpha \leqslant 85^{\circ}, 0.2 \leqslant r_{0} \leqslant 0.5$. Все расчеты производились по методу, детально изложенному в работе [${ }^{5}$].

На фиг. 2 приведено поле линий уровня числа Маха в отмеченной кругом области сопла (фиг. 1), для которого $\alpha=70^{\circ}$ и $r_{0}=0.3$. Оно является типичным для течений с указанным выше диапазоном изменения α и r_{0}.

В области, прилегающей к стенке сопла в окрестности его горла, осуществляется весьма интенсивный разгон потока. Вдоль оси сопла ускорение частиц происходит гораздо медленнее. Это приводит к значительному изменению величины скорости в поперечном направлении и связанному с ним изменению остаиьных параметров потока. Так, в рассматриваемом случае значение числа Маха в критическом сечении $x=0$ изменяется от 0.75 на оси сопла до 1.7 на его стенке. При продвижении вверх по потоку от критического сечения поперечный градиент параметров быстро уменьшается. Как видно из фиг. 2 , на расстоянии 0.5 калибра он составляет примерно 0.13 для числа Маха. В выхлопной части сопла поперечная неравномерность потока сохраняется на значительно больших расстояниях.

Во всех рассмотренных примерах в сверхзвуковой области течения на стенке сопла возникала небольшая зона торможения. На фиг. 2 она хорошо видна.
2. Предположение о том, что течение в переходной части сопел Лаваля определяется главным образом значением радиуса кривизны стенки в критическом сечении, легло в основу двух работ [${ }^{\text {®, }}$] , в которых величина параметров потока определялась аналитически. В работе ['] исправлены ошибки, допущенные в более ранней работе [${ }^{6}$], и результаты распространены на малые значения радиуса r_{0}. В работе [${ }^{8}$] приводится сравнение результатов экспериментального исследования сопла с $\alpha=45^{\circ}$ и $r_{0}=$ $=0.625$ с расчетом по формулам работы [$\left.{ }^{7}\right]$. Из него видно, что поле течения лишь на некотором расстоянии от стенки сопла удовлетворительно описывается при помощи разложения по параметру $\left(1+r_{0}\right)^{-1}$.

Тем не менее указанное предположение о преимущественном влиянии величины r_{0} на течение в соплах хорошо выполняется и в пристеночной области сопла Лаваля. Это следует из приводимых ниже результатов расчета.

На фиг. 3 изображены кривые распределения отношения давления к критическому p / p_{*} вдоль стенки при $r_{0}=0.2$ и различных значениях угла а. Существенное различие между ними наблюдается только в малой окрестности точки сопряжения конического участка с дугой окружности образующей горловины сопла. При очень больших значениях угла α вблизи этой точки имеется небольшое сжатие потока, природа которого аналогична хорошо известному явлению, обычно возникающему при обтекании носика щрофиля крыла с резким изменением радиуса кривизны его контура. Как указывалось выше, в сверхзвуковой области течения на стенке также появляется область сжатия. В работе [${ }^{8}$] она интерпретируется как косой скачок уплотнения. По приводимым результатам такого вывода сделать нельзя.

Аналогичные результаты получены и для других значений радиуса r_{0} Они явно указывают на слабую зависимость параметров потока от величины угла α наклона подводящего конического участка к оси сопла.

Вместе с тем изменение величины p / p_{*} вдоль стенки сильно зависит от r_{0}. Это хорошо видно из фиг. 4, a, где приведены кривые $p / p *$ для различных значений r_{0}, но одного и того же угла $\alpha=70^{\circ}$. Как и следовало ожидать, при увеличении радиуса r_{0} кривые отношения давлений становятся все более пологими и приближаются к получаемым в гидравлическом приближении. Интенсивностъ сжатия на стенке в сверхзвуковой области потока также падает с ростом r_{0}.

Рассмотрим теперь изменение полученных величин вдоль оси сбмметрии сопла. В отличие от периферийных областей потока распределение параметров на его оси во всех случаях было монотонным. Для угла $\alpha=70^{\circ}$ на фиг. 4,6 построены распределения p / p_{*} при различных r_{0}. В согласии с общими представлениями о структуре течения зависимость p / p_{*} и ос-

тальных параметров потока от r_{0} сильно ослабляется прп удалении от стенки. Их зависимость от угла становится еще более слабой. Приведенные результаты наглядно иллюстрируют известную некорректность обратной задачи сопла, заключающейся в определении поля течения по заданному распределению параметров на его оси. В работе [${ }^{2}$], например, в ко-

Фиг. 4

Фиг. 5

Фиг. 6

торой производилось численное решение обратной задачи, .она выражаласьв невозможности продолжать счет при неудачном выборе узлов расчетной сетки на оси x. Указанная некорректность имеет физическую основу и свявана со слабой зависимостью величин на центральной линии тока от конфигурации стенок.
3. Расход газа в единицу времени через поперечное сечение сопла в расчетном режиме өго работы является одной из наиболее важных характеристик. Он определяется только формой подводящей части канала, в поперөчном сечении которого происходит переход через скорость звука. В качестве его меры берется коәффициент расхода C_{d}, равный отношению величины потока массы через поперечное сечение сопла к потоку массы через сечение цилиндрической трубы, радиус которой равен критическому, а скорость частиц в ней звуковая. Коәффициент $C_{d}=1$ в очень пологих соплах, у которых $r_{0}=\infty$. В крутых соплах $C_{d}<1$. На фпг. 5 приведены значения C_{d} для различных r_{0} и углов α. Здесь опять зависимость от r_{0} проявляется более сильно, чем от угла α наклона образующей конуса. Одвако пренебрегать ею не следует из-за важности знания величины C_{d}.

Для плоских потоков хорошо известно, что минимальное значение $\left.C_{d}=0.85{ }^{\text {® }}\right]$ достигается при истечении сверхкритической струи из экра-

на, т. е. при $\alpha=90^{\circ} r_{0}=0$. Результаты, приведенные на фиг. 5 , указывают на такую же тенденцию и в осесимметричных течениях.

Для более полного описания трансзвукового течения в горле сопла следует выяснить еще эволюцию положения звуковой линии, форма которой при $r_{0}=0.3$ и $\alpha=70^{\circ}$ приведена на фиг. 1. Отметим, что во всех рассмотренных случаях звуковая линия имеет точку перегиба.

Звуковая точка на стенке сопла находится на дуге его горловины, и ее положение может быть описано величиной угла $\gamma *$, отмеченного на фиг. 6. Положение звуковой точки на оси симметрии относительно критического сечения характеризуется ее координатой l_{*}. На фиг. 6 приведены кривые изменения γ_{*} в зависимости от r_{0} и угла α. Как и все остальные параметры течения, $\gamma *$ от α зависит слабее, чем от r_{0}. С уменьшением r_{0} угол $\gamma *$ растет и согласно общим ноложениям газодинамики должен равняться α при $r_{0}=0$. Координата l_{*} почти не зависит от α. Ее изменение в зависимости от r_{0} изображено на фиг. 7. Там же приведены еще значения координаты x_{*} положения звуковой точки на стенке сопла.

Поступило 3 IV 1970

ЛИТЕРАТУРА

1. Алихашкин Я. И., Фаворский А. П., Чупкин П. И. О расчете течения в плоском сопле Лаваля. Ж. вычислит. матем. и матем. физ., 1963, т. 3, № 6, стр. 1130-1134.
2. Ппрумов У. Г. Расчет течения в соплах Лаваля. Изв. АН СССР, МЖГ, 1967, № 5 , стр. 10-22.
3. Migdal D., Klein K., Moretti G. Time-dependent calculations for transonic nozzle flow. AIAA Journal, 1969, vol. 1, No. 2, pp. 372-374.
4. Иванов М. Я., Крайко А. Н. Численное решение прямой задачи о смешанном течении в соплах. Изв. АН СССР, МЖГ, 1969, № 5, стр. 77-83.
5. Киреев В. И., Лиф шид Ю. Б., Михайлов Ю. Я. О решении прямой задачи сопла Јаваля. Уч. зап. ЦАГИ, 1970, т. 1, № 1, стр. 8-13.
6. H all T. M. Transonic flow in two-dimensional and axially-simmetric nozzles. Quart. J. Mech. Appl. Math., 1962, vol. 15, pt 4, pp. 487-508.
7. Kliegel J. K., Levine J. N. Transonic flow in small throat radius of curvature nozzles. AIAA Journal, 1969, vol. 7, No. 7, pp. 1375-1378.
8. Cuffel R. F., Back L. H., Massier P. F. Transonic flow field in a supersonic nozzles with small throat radius of curvature. AIAA Journal, 1969, vol. 7, No. 7, pp. 1364-1366.
9. Франкль Ф. И. Истечение сверхзвуковой струи из сосуда с плоскими стеннами. Докл. АН СССР, Новая серия, 1947, т. 58, № 3, стр. 381-384.
