РАСПРОСТРАНЕНИЕ УДАРНЫХ ВОЛН В СРЕДЕ С ЭКСПОНЕНЦИАЛЬНО МЕНЯЮЩЕЙСЯ ПЛОТНОСТЬЮ

В. В. МОЗЖИЛКИН, С. В. ФАЛЬКОВИЧ

(Саратов)
Обобщаются результаты Ю. П. Райзера [1], У. Д. Хейза [²] и Ф. Л. Черноусько [³] на случай автомодельного распространения ударных волн в газе с экспоненциально изменяющейся плотностью и постоянным давлением. Построено решение задачи методом последовательных приближений. Нулевое приближение совпадает с методом Уитема [4]. Первое приближение хорошо согласуется с численными расчетами ив работы [²]. В рамках линейной теории исследовано неавтомодельное движение слабой ударной волны.

1. Рассмотрим движение ударной волны по каналу, поперечное сечение которого изменяется по закону

$$
\begin{equation*}
A=A_{0} e^{\lambda \beta x} \tag{1.1}
\end{equation*}
$$

где A_{0} п β^{-1} - постоянные, имеющие соответственно размерности площади и длины, λ - безразмерная постоянная.

Предположим, что газ идеальный политропический с показателем адиаббаты γ; невозмущенное состояние газа определяется формулами

$$
\begin{gather*}
p=p_{0}=\text { const }, \quad u=0, \quad \rho_{0}=\rho_{\infty} e^{\theta \beta x} \tag{1.2}\\
\rho_{\infty}=\text { const }, \quad \theta=\text { const }
\end{gather*}
$$

где p - давленше, u - скорость газа, ρ - плотность.
В гидравлическом приближении движение газа описывается уравнеіНиями

$$
\begin{align*}
& \frac{\partial(u \pm k c)}{\partial t}+(u \pm c) \frac{\partial(u \pm k c)}{\partial x}=\mp \lambda \beta u c+\frac{c^{2}}{\gamma} \frac{\partial \Phi}{\partial x} \\
& \frac{\partial \Phi}{\partial t}+u \frac{\partial \Phi}{\partial x}=0 \quad\left(\Phi=\ln \frac{c^{k \gamma}}{p}, \quad k=\frac{2}{\gamma-1}\right) \tag{1.3}
\end{align*}
$$

Здесь $с$ - скорость звука Φ - энтропия.
Так как уравнения (1.3) допускают тождественое преобразование

$$
\begin{equation*}
t^{\prime}=t, \quad x^{\prime}=\theta x, \quad u^{\prime}=\theta u, \quad c^{\prime}=\theta c, \quad \Phi^{\prime}=k \ln \theta+\Phi \tag{}
\end{equation*}
$$

то, не нарушая общности, можно предположить, что в законе начального распределения плотности $\theta=1$.

Из условий Ренкина - Гюгонио следует, что на скачке должны выполняться граничные условия

$$
\begin{gather*}
u^{*}=2(\gamma+1)^{-1} U\left(1-M^{-2}\right), \quad \Phi=\Phi^{\circ}+k \ln |U|-\beta x \\
c^{*}=\frac{\sqrt{2 \gamma(\gamma-1)}}{\gamma+1}|U|\left(1-\frac{1}{k \gamma M^{2}}\right)^{1 / 2}\left(1+\frac{k}{M^{2}}\right)^{1 / 2} \tag{1.4}\\
M=|U|\left(\gamma \frac{p_{0}}{\rho_{0}}\right)^{-1 / 2}
\end{gather*}
$$

где U - скорость ударной волны, M - число Маха ударной волны що отношению к невозмущенному газу

$$
\Phi^{0}=\ln \left\{\frac{[2 \gamma(\gamma-1)]^{k \gamma / 2}}{2 \rho_{\infty}(\gamma+1)^{k / 2}}\right\}+\frac{k}{2} \ln \left(1-\frac{1}{k \gamma M^{2}}\right)+\frac{k \gamma}{2} \ln \left[1+\frac{k}{M^{2}}\right]
$$

Будем искать автомодельные решения системы (1.3). Зададим закон движения скачка в форме

$$
\begin{equation*}
X(t)=\frac{\alpha}{\beta} \ln (-t) \tag{1.5}
\end{equation*}
$$

где $\alpha>0$ - показатель автомодельности. Предпаложиим, что скачок движется в сторону уменьшения $x, t<0$. Нетрудно заметить, что автомодельное решение существует в трех случаях:
а) газ холодный $p_{0} \equiv 0$. Этот случай подробно исследован Ю. П. Райзером [${ }^{1}$] и У. Д. Хейзом [${ }^{2}$];
б) параметры $p_{0} \neq 0, M^{2}=|t|^{\alpha-2} \alpha^{2} \rho_{\infty}\left(\gamma p_{0}\right)^{-1} \beta^{-2} \gg 1$. Toгда

$$
\begin{equation*}
0 \leqslant \alpha \leqslant 2 \tag{1.6}
\end{equation*}
$$

в) параметры $p_{0} \neq 0, M=$ const, $\alpha=2$.

Введем автомодельные переменные по формулам

$$
\begin{gather*}
\xi=\beta(x-X) \quad(0 \leqslant \xi \leqslant+\infty) \\
u=\frac{\alpha}{\beta t} r(\xi)_{\star} \quad c=\frac{\alpha}{\beta t} s(\xi) \tag{1.7}\\
\Phi=\Phi^{\circ}+k \ln \frac{\alpha}{\beta}-(k+\alpha) \ln |t|+F(\xi)
\end{gather*}
$$

Подставляя (1.7) в (1.3), получаем систему обыкновөнных диффференциальных уравнений для функций r, s, F^{1}

$$
\begin{gather*}
2 k(r-1)(r-s-1)(r+s-1) \frac{d s}{d \xi}=B_{+}(r-s-1)-B_{-}(r+s-1) \tag{1.8}\\
\frac{d r}{d s}=k \frac{B_{+}(r-s-1)+B_{-}(r+s-1)}{B_{+}(r-s-1)-B_{-}(r+s-1)} \tag{1.9}\\
\frac{d F}{d \xi}=\frac{1+k \alpha^{-1}}{r-1} \tag{1,10}\\
B_{ \pm}=(r-1)\left[\alpha^{-1}(r \pm k s) \mp \lambda r s\right]+\gamma^{-1}(1+k \alpha) s^{2}
\end{gather*}
$$

Эта система имеет два тривиальных решения $r \equiv 1$ и $s \equiv 0$ и две особые линии, на которых функции $\xi(r)$ и $\xi(s)$ имеют экстремумы. Уравнение (1.9) имеет восемь особых точек: звездообразный узел $O(0,0)$; три особые точки на предельной характеристике $r-s-1=0: P(0,1), Q_{1}$ п Q_{2}, координаты которых удовлетворяют системе уравнений

$$
\begin{equation*}
\lambda \alpha r_{0}^{2}+r_{0}\left(1-\alpha \lambda-\gamma^{-1}(2-\alpha)\right)+\gamma^{-1}(2-\alpha)=0, \quad s_{0}=r_{0}-1 \tag{1.11}
\end{equation*}
$$

особая точка R с координатами

$$
r=\frac{k}{\lambda \alpha}, \quad s=-\left[\frac{r(1-r)}{\gamma(k+\alpha)}\right]^{1 / 2}
$$

и три особые точки, симметричные Q_{1}, Q_{2} и R относительно оси (2.9).

[^0]Граничные условия на ударной волне (1.4) можно преобразовать к в вдду

$$
\begin{array}{r}
\xi=0, \quad r^{*}(0)=(\gamma+1)^{-1}\left(1-M^{-2}\right), \quad F^{*}(0)=0 \tag{1.12}\\
s^{*}(0)=-\frac{\sqrt{2 \gamma(\gamma-1)}}{\gamma+1}\left[1-\frac{1}{k \gamma M^{2}}\right]^{1 / 2}\left[1+\frac{k}{M^{2}}\right]^{1 / 2}
\end{array}
$$

В момент времени $t=0$ значения $u(x, 0)$ и $c(x, 0)$ должны быть конөчными, следовательно, если $\xi=+\infty$, то

$$
\begin{equation*}
r(\infty)=s(\infty)=0 \tag{1.13}
\end{equation*}
$$

На плоскости $r s$ ударной волне соответствует дуга эллииса

$$
\begin{equation*}
s^{2}=(1-r)(1+r / k) \tag{1.14}
\end{equation*}
$$

начинающаяся в точке ($-1,0$), которая соответствует акустической волне, и оканчивающаяся в точке

$$
\left(-\frac{\sqrt{2 \gamma(\gamma-1)}}{\gamma+1}, \frac{2}{\gamma+1}\right)
$$

которая соответствует сильной ударной волне.
Вдоль искомой интегральной кривой уравнения (1.9), начинающейся на эллипсе (1.14) и оканчивающейся в особой точке O, автомодельная переменная ξ должна монотонно возрастать от 0 до $+\infty$, поэтому при соответствующих значениях α и λ решение должно пересечь предельную характеристику в одной из особых точек P, Q_{1}, Q_{2}. Подробный анализ системы (1.8) -(1.10) в окрестности узла P показывает, что в нем плотность газа равна бесконечности в любой фиксированный момент времени $t \neq 0$. Поэтому искомое решение должно проходить через точки Q_{i} и Q_{2}. Из (1.6) (1.11) следует, что

$$
\begin{equation*}
0 \leqslant \frac{1}{\alpha}-\frac{1}{2}=\frac{\gamma r_{0}\left[\lambda\left(r_{0}-1\right)+1 / 2\right]}{r_{0}(2-\gamma)-2} \tag{1.15}
\end{equation*}
$$

Вдоль оси $s \leqslant-1$ производная $d r / d \xi>0$, поэтому $0 \leqslant r_{0} \leqslant 1$. Из (1.15) следует, что в случае $p_{0} \neq 0$ автомодельное решение существует только при $\lambda \geqslant 1 / 2$ и что

$$
\begin{equation*}
0 \leqslant \frac{1}{\alpha}-\frac{1}{2} \leqslant \frac{\gamma^{\lambda}}{2} V_{0}^{2} \tag{1.16}
\end{equation*}
$$

гдө

$$
V_{0}=\frac{2}{2-\gamma}\left\{1-\left[1-\frac{2-\gamma}{2}\left(1-\frac{1}{2 \lambda}\right)\right]^{1 / 2}\right\}
$$

Если $\lambda-1 / 2 \ll 1$, то существуют только автомодельные движения с показателем $\alpha=2$, так как из (1.16) следует, что при $\lambda \rightarrow \frac{i}{2}+0 \alpha \rightarrow 2-0$ и особые точки Q_{1} и Q_{2} сииваются с точкой ($-1,0$), через которую проходит единственное физически реальное решение $r \equiv 0$, начинающееся на эллипсе (1.14). Когда $\alpha=2$, особые точки Q_{1} и Q_{2} имеют координаты $(-1,0)$ п п $\left(-1 / 2 \lambda^{-1}, 1-1 / 2 \lambda^{-1}\right)$.

Чөрез узел Q_{1} проходит единственное решение уравнения (1.9) $r \equiv 0$, имеющее физический смысл и совместимое с граничными условиями (1.13) и (1.14), поэтому искомое решение должно проходить через особую точку Q_{2}. Потребуем, чтобы с увеличением расстояния от ударной волны скорость газа монотонно убывала, тогда точка Q_{2} - седло и через нее проходит единственное решение, удовлетворяющее условиям задачи. При $\lambda \rightarrow$ $\rightarrow 1 / 2$ оно стремится к решению $r \equiv 0$, которое соответствует состоянию по-

коя. Однако при $\lambda \rightarrow+\infty$ автомодельное движение с $\alpha=2$ не существует, так как тогда $Q_{2} \rightarrow P$.

Таким образом, при $1 / 2 \leqslant \lambda \leqslant \lambda^{\circ}$ реализуется автомодельное движение с ударной волной постоянной интенсивности и $\alpha=2$, причем с ростом λ число Маха M растет от 1 до $+\infty$. При $\lambda \geqslant \lambda^{\circ}$ существуют только автөмодельные движения второго типа (см. [${ }^{5}$]) с сильной ударной волной.
2. Во многих задачах о движении ударных волн (см., например, $\left[{ }^{i-7}\right]$) очень хорошее совпадение с точными численными результатами дает метод Уитема ["], в основе которого лежит допущение, что на скачке выполняется условие вдоль характеристики

$$
\begin{equation*}
\frac{d\left(u^{*}-k c^{*}\right)}{d x}=\frac{\lambda \beta u^{*} c^{*}}{u^{*}-c^{*}}-\frac{c^{*}}{\gamma} \frac{d \Phi^{*}}{d x} \tag{2.1}
\end{equation*}
$$

Проинтегрировав его, найдем закон движения скачка. В частности, для задачи, рассмотренной в предыдущем пункте, показатель автомодельносте α равен [${ }^{2}$]

Отсюдда

$$
\begin{equation*}
\alpha^{-1}=\left(2+\overline{\gamma k \gamma}^{-1}\left\{1+\lambda \gamma\left(1+\overline{\gamma \gamma / k}^{-1}\right\}\right.\right. \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\lambda^{\circ}=1 / 2[1+\sqrt{\sqrt{k / \gamma}]} \tag{2.3}
\end{equation*}
$$

Формула Уитема (2.2) при $\lambda>\lambda^{\circ}$ определяет показатели автомодельности для $p_{0} \neq 0, M \gg 1$, а также для $p_{0}=0$; при $\lambda<\lambda^{\circ}$ - только для $p_{0} \equiv 0$ 。

Если $\alpha=2$, то из (2.1) следует, что число Маха за скачком и λ связаны соотношением

$$
\begin{equation*}
M^{*}=u^{*} / c^{*}=1-2 \lambda \tag{2,4}
\end{equation*}
$$

Хейз [${ }^{2}$] показал, что формула Уитема (2.2) плохо согласуется с точными численными результатами. Поэтому попытаемся построить мөтод последовательных приближений, который включал бы в себя метод Уитема как нулөвое приближение, а первое приближение хоропо согласовывалось бы с точными значениями.

Нетрудіно заметить, что на скачке

$$
\begin{align*}
& \frac{d\left(u^{*}-k c^{*}\right)}{d x}-\lambda \beta \frac{u^{*} c^{*}}{u^{*}-c^{*}}+\frac{c^{*}}{\gamma} \frac{d \Phi^{*}}{d x}= \\
= & \left(\frac{1}{U}-\frac{1}{u^{*}-c^{*}}\right)\left[\frac{\partial(u-k c)}{\partial t}+\frac{c}{\gamma} \frac{\partial \Phi}{\partial t}\right] \tag{2.5}
\end{align*}
$$

Сравнивая (2.1) и (2.5), получаем, что метод Уитема справедлив, өсли характеристики семейства $C_{\text {- достаточно близки к ударной волне или }}$

$$
\begin{equation*}
\frac{\partial(u-k c)}{\partial t}+\frac{c}{\gamma} \frac{\partial \Phi}{\partial t} \equiv 0 \tag{2.6}
\end{equation*}
$$

Уитем [${ }^{4}$] отметил, что относительно высокая точность его метода объясняется главным образом условием (2.6), поэтому предположим, что оно справедливо всюду между ударной волной и предельной характеристикой. С помощью соотношений (1.7) - (1.10) легко показать, что (2.6) әквивалентно условию

$$
\begin{gather*}
\Psi(r, s, \gamma, \lambda, \alpha)=(r-s)\left[\alpha^{-1}\left(r-2 \gamma^{-1} s\right)+\gamma^{-1} s\right]+\lambda \cdot \mathrm{rs}=0 . \tag{2.7}\\
r=M^{*} s \tag{2.8}
\end{gather*}
$$

Примем соотношения (2.2) и (2.8) за нулевое приближение и подставем ихх в правую часть уравнения (1.9). Проинтегрировав его, найдем, что

в случаях $p_{0} \equiv 0$ и $M \gg 1$, если $C^{2}+4 b M^{*}>0$

$$
\begin{gather*}
r(s)=r^{*}+\frac{1}{b}\left\{a\left(s-s^{*}\right)+\frac{1}{s_{2}-s_{1}}\left[\left(a s_{2}+M^{*}\right)\left(s_{2}+\frac{1}{M^{*}}\right) \ln \frac{s-s_{2}}{s^{*}-s_{2}}-\right.\right. \\
\left.\left.-\left(a s_{1}+M^{*}\right)\left(s_{1}-\frac{1}{M^{*}}\right) \ln \frac{s-s_{1}}{s^{*}-s_{1}}\right]\right\} \tag{2.9}\\
s_{1,2}=\left(2 b M^{*}\right)^{-1}\left\{-C \pm \sqrt{C^{2}+4 b M^{*}}\right]
\end{gather*}
$$

если $-\Delta^{2}=c^{2}+4 b M^{*}<0$, то

$$
\begin{gathered}
r(s)=r^{*}+\frac{a}{b}\left\{s-s^{*}+\frac{1}{2 M^{*}}\left[\frac{1}{a}\left(M^{*^{2}}-a\right)-\right.\right. \\
\left.-\frac{C}{b}\right] \ln \frac{b M^{*} s^{2}+C s-1}{b M^{*}\left(s^{*}\right)^{2}+C s^{*}-1}+\frac{1}{M^{*} b \Delta}\left[\operatorname{arctg} \frac{2 b M^{*} s+C}{\Delta}-\right. \\
\left.\left.-\operatorname{arctg}\left(2 b M^{*} s^{*}+C\right) / \Delta\right]\left[2 b M^{*}-M^{* 2} b a^{-1}(2 b+C)+C(b+C)\right]\right\}
\end{gathered}
$$

Здесь

$$
a=2 \gamma^{-1}-M^{*}-\alpha \gamma^{-1}
$$

$$
b=\gamma^{-1}\left[1-M^{*}(\gamma-1)+M^{*} k^{-1} \alpha\right], \quad C=\gamma^{-1}\left[M^{*}(2 \gamma-1)-\alpha\left(M^{*}-1\right)\right]
$$

Определим первое приближение к показателю α_{1} из условия, что репение (2.7) должно пересечь предельную характеристику в особ̈ой точке. Затем щроцесс повторяется.

Приводим значения α_{1} и показателя α_{0}, определенного по формуле Уктема (2.2), а также точное значение α из работы [${ }^{2}$] шри $\gamma=1.4$.

λ	$=0.6$	0.8	1.0	2.0	3.0
α	$=3.265$	2.885	2.589	4.0	
α_{1}	$=3.281$	3.893	2.589	1.702	1.271
α_{0}	$=2.998$	2.682	2.425	1.641	1.240
			0.997		

Уже в первом приближении совпадение результатов очень хорошеө, причем с ростом λ точность растет, что повволяет предположить, что точность вычисленных показателей автомодельности α_{1} для случая $p_{0} \neq 0$ $(\lambda \geqslant 2)$ вполне удовлетворительная. Интересно отметитъ, что $\Psi(r, s, \lambda, \gamma$, a) есть достаточно малая величина и для случая скачка умеренной интенсквности. Опибка при вычислении производной $d r / d s$ на предельной характеристике не превышает 4%. Для первого приближения получаются формулы, аналогичные (2.9), если положить в них

$$
\begin{equation*}
a=-M^{*}, \quad b=M^{* 2} k, \quad c=k^{-1}\left\{k M^{*}-M^{* 2}+M^{*}\right] \tag{2.10}
\end{equation*}
$$

Число λ находится из условия (1.11). По формулам (2.9) и (2.10) найдено, что для случая $\gamma=1.4, \lambda^{\circ}=1.5702$. Метод Уитема дает значение $\lambda^{\circ}=1.4449$. Так как $1<\lambda^{\circ}<2$ и в этом случае $M=\infty$, то результаты, приведенные выше, показывают, что вычисленное значение λ° достаточно точное.
3. В первом пункте было показано, что при $\lambda \rightarrow 1 / 2+0$ ударная волна ослабляется, вырождаясь в акустическую. Тогда можно предположить, что прй $\lambda<\frac{1}{2}$ существуют неавтомодельные течения со слабыми ударными волнами. Введем поэтому новые переменные

$$
\begin{equation*}
\rho=\rho_{\infty} e^{\beta x}+\rho_{0}, \quad p=p_{0}+p^{\circ}, \quad u=u_{0} \tag{3.1}
\end{equation*}
$$

и предположим, что

$$
\begin{gather*}
\frac{\rho^{\circ}}{\rho_{\infty} e^{\beta x}} \ll 1_{1} \quad \frac{u^{2}}{c_{\infty}^{2} e^{\beta x}} \ll 1, \quad \frac{p^{\circ}}{p^{\circ}} \ll 1 \tag{3.2}\\
\left(c_{\infty}^{2}=\gamma p_{0} / \rho_{\infty}\right)
\end{gather*}
$$

Обозначим через $v(x, t)$ смещение частицы из начального (невозмущенного) состояния. Так как в линейной теории обычно пренебрегают различием между эйлеровыми и лагранжевыми координатами, то $u=\partial v 1$ / ∂. Подставим (3.1) в уравнения движения. После простых преобразований, учитывая, что при $t \rightarrow-\infty p^{0}=\rho^{\circ}=0$, получим

$$
\begin{gather*}
e^{\beta x} \frac{\partial^{2} v}{\partial t^{2}}=c_{\infty}{ }^{2} \frac{\partial}{\partial x}\left[\frac{\partial v}{\partial x}+\beta \lambda v\right] \tag{3.3}\\
p^{\circ}=-p_{0}\left[\frac{\partial v}{\partial x}+\beta \lambda v v^{7}, \quad \rho^{v}=-\rho_{\infty} e^{\beta x}\left[\frac{\partial v}{\partial x}-\beta(\lambda+1) v\right]\right. \tag{3.4}
\end{gather*}
$$

Уравнение (3.3) допускает инвариантно-групповое репшение вида

$$
\begin{gather*}
v=\frac{1}{\beta} G e^{\delta \beta x} R(y)_{4} \quad y=\frac{1}{2}\left(1+\frac{c_{\infty} \beta t}{2 e^{\beta x / 2}}\right) \tag{3.5}\\
G=\text { const, } \quad \delta=\mathrm{const}, \quad 0 \leqslant y \leqslant 1 / 2
\end{gather*}
$$

Функция $R(y)$ удовлетворяет гипергеометрическому уравнению

$$
\begin{equation*}
y(1-y) R^{\prime \prime}+(1 / 2-\lambda-2 \delta)(1-2 y) R^{\prime}-4 \delta(\lambda+\delta) R=0 \tag{3.6}
\end{equation*}
$$

На ударной волне смещение непрерывно, а скорость и давление терпят конечный разрыв, поәтому, не нарушая общности, можно считать, что на скачке

$$
\begin{equation*}
R(0)=0, \quad R^{\prime}(0)=1 \tag{3.7}
\end{equation*}
$$

Из свойств линейно-независимыгх решений гишергеометрического уравнения следует, что условиям (3.7) можно удовлетворить только при

$$
\delta=1 / 2(1 / 2-\lambda)
$$

Тогда единственным решением, удовлетворяющим условиям (3.7), будет

$$
\begin{equation*}
R(y)=y F(1 / 2-\lambda, 1 / 2+\lambda, 2, y) \tag{3.8}
\end{equation*}
$$

Если $\lambda=-1 / 2-n$, где n - целое, то решение (3.8) можно представить в виде многочлена $n+1$-й степени

$$
\begin{gathered}
R(y)=y \sum_{i=0}^{n} a_{i+1} y^{i} \\
\left(a_{1}=1, \quad a_{i+1}=\frac{i(i-1)-n(n+1)}{i(i+1)} a_{i}\right)
\end{gathered}
$$

Если λ - произвольное число, меньшее $\frac{1}{2}$, то на скачке

$$
\begin{gathered}
v=0, \quad u=1 / 4 G c_{\infty} e^{\beta(0-1 / 2) x} \\
\rho^{\circ}=-1 / 4 G \gamma p_{0} e^{\delta \beta x}, \quad \rho^{\circ}=-1 / 4 \rho_{\infty} e^{\beta((0+1) x} \\
M=1-1 / 16(\gamma+1) G e^{\beta_{\beta x}}
\end{gathered}
$$

Отсюда видно, что, хотя скорость ударной волны неограниченно возрастает, интенсивность скачка уменьшается и условия линеаризации (3.2) выполнены.

Соотношения (3.4), (3.5) и (3.8) определяют закон затухания скачка.

ЛИТЕРАТУРА

1. Райзер Ю. П. Раскространение ударной волны в неоднородной атмосфере в сторону уменьшения плотности. ПМТФ, 1964, № 4.
2. Hayes W. D. Self-similar strong shocks in an exponential medium. J. Fluid. Mech., 1968, vol. 32, p. 2. (Рус. перев.: «Механика», Период. сб. перев. иностр. статей, 1968, № 6 (112).)
3. Черноусько Ф. Л. Сходящиеся ударные волны в газе с переменной плотностью. ПММ, 1960, т. 24, вып. 5.
4. Whitham G. B. On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid. Mech., 1958, vol. 4, pt 4.
5. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений, Изд. 2. М., «Наука», 1966.
6. Sakurai A. On the problem of shock wave arriving at the edge of a gas. Comm. Pure. Appl. Math., 1960, vol. 13, p. 353.
7. Welsh R. L. Imploding shocks and detonations. J. Fluid. Mech., 1967, vol. 29, pt 1.

[^0]: ${ }^{1}$ Замена $z=s^{2}$ приводит уравнение (1.9) в уравнение (2.9) работы [2].

