О РОЛИ ПОГЛОЩЕНИЯ ИЗЛУЧЕНИЯ ПЕРЕД УДАРНОИ ВОЛНОИ ПРИ ГИІЕРЗВУКОВОМ ОБТЕКАНИИ ЗАТУПЛЕННОГО ТЕЛА

В. К. ВЕРТУПКИН, Е. А. РОМИПЕВСКИИ

(Mосква)
Получены условия на фровте сильного скачка уплотнения с учетом поглощения опережающего излучения, отмечена роль возникающих при этом безразмерных параметров, проведены одевки значений этих параметров для ряда интересных реальных случаев входа затупленных тел в плотные слои атмосферы Земли. Выполненм расчеты по определению состава и параметров натекающего на ударную волну потока молекулярного азота, сделаны выводы относительно постановки общей задачи гиперзвукового обтекания затупленного тела с учетом излучения.

При исследовании обтекания затупленного тела гиперзвуковым потоком воздуха с учетом излучения необходимо иметь представление о том, как взаимодействует излучение, выходящее из зоны ударной волны, с натекающим потоком холодного воздуха. На важность учета такого взаимодействия указывают результаты наблюдения за входом в плотные слои атмосферы космических аппаратов [${ }^{1}$] и имеющиеся экспериментальные данные о сильных ударных волнах [²]. Это взаимодействие связано с тем, что поглощение интенсивного коротковолнового излучения ударного слоя в холодном воздухе приводит к фотодиссоциации и фотоионизации иолекул воздуха, т. е. к фактическому увеличению его энтальпии. Некоторые общие вопросы структуры очень сильной прямой ударной волны с учетом поглощения «опережающего» фронт волны излучения исследовались в монографии [3].

1. Рассмотрим плоский прямой сильный скачок уплотнения. Законы сохранения массы, импульса и энергии запишем в обычном виде

$$
\begin{gather*}
\rho(x) u(x)=\rho_{\infty} u_{\infty} \\
\rho(x) u^{2}(x)+p(x)=\rho_{\infty} u_{\infty}^{2} \tag{1.1}\\
h(x)+\frac{u^{2}(x)}{2}+\frac{q(x)}{\rho_{\infty} u_{\infty}}=\frac{u_{\infty}^{2}}{2}+\frac{\mathrm{q}_{\infty}}{\rho_{\infty} u_{\infty}}
\end{gather*}
$$

Процессы, связанные с излучением и поглощением энергии ($q(x)$ - поток лучистой энергии), представлены только в последнем энергетическом соотношении, поэтому основное влияние излучение будет оказывать на изменение энтальпии $h(x)$ натекающего на фронт ударной волны потока холодного воздуха ["].

Определим значения параметров потока непосредственно за фронтом этой ударной волны. Будем считать, что «эффективный пробег» излучения в нагретой зоне значительно превышает длину свободного пробега частиц. воздуха, а выходящий с фронта поток излучения q_{0} поглощается в натекающем холодном воздухе. При этом из уравнений (1.1) получим

$$
\begin{aligned}
& u_{0}^{\prime}=\frac{u}{u_{\infty}}=\frac{x-\sqrt{1-W\left(x^{2}-1\right)}\left(W=\frac{2 q_{0}}{\rho_{\infty} u_{\infty}{ }^{2}}\right)}{x+1}\left(\begin{array}{l}
\rho_{0}^{\prime}=\frac{\rho_{0}}{\rho_{\infty}}=\frac{x+\sqrt{1-W\left(x^{2}-1\right)}}{(x-1)(1+W)}
\end{array} .\right.
\end{aligned}
$$

$$
\begin{gather*}
p_{0}{ }^{\prime}=\frac{p_{0}}{\rho_{\infty} u_{\infty}{ }^{2}}=\frac{1+\sqrt{1-W\left(x^{2}-1\right)}}{x+1} \tag{1.2}\\
h_{0}{ }^{\prime}=\frac{h_{0}}{u_{\infty}{ }^{2}} \frac{x\left[1+\sqrt{\left.1-W\left(x^{2}-1\right)\right]}(1+W)\right.}{(x-1)\left[x+\sqrt{\left.1-W\left(x^{2}-1\right)\right]}\right.} \quad\left(h=\frac{x}{x-1} \frac{p}{\rho}\right)
\end{gather*}
$$

Здесь W - безразмерный параметр, характеризующий влияние излучения, а x - эффективный показатель адиабаты в нагретой зоне за скачком уплотнения.

В данном случае величина параметра W положительная. Однако, когда эффективный пробег излучения в нагретой зоне очень мал, и там поток излучения почти отсутствует, а перед фронтом волны поток излучения q_{0} почти не поглощается, величина параметра W отрицательная и $|W|<1$.

Из соотношений (1.2) видно, что если значение параметра W не очень. мало по сравнению с единицей, то пренебрегать эффектом поглощения опережающего излучения в холодном воздухе, как и эффектом высвечивания с фронта сильной ударной волны, уже нельзя.

Относительно качественного влияния выходящего с фронта волны излучения на характер обтекания затупленного тела можно сказать, имея в виду условия (1.2), следующее:

1) эффект поглощения выходящего излучения приводит к уменьшению плотности и увеличению энтальшии воздуха за фронтом волны, а это должно естественно приводить к увеличению толщины ударного слоя, то есть к некоторому отходу ударной волны от поверхности тела вблизи критической точки;
2) эффект высвечивания, наоборот, должен приводить к уменьшению толщины ударного слоя, и в предельном случае $|W| \rightarrow 1$ ударная волна должна находиться непосредственно у поверхности тела.

Следует заметить, что при исследовании обтекания затупленных тел с учөтом излучения имеют значение еще два параметра: параметр $\omega^{*}=\left(l^{*} / R\right)^{-1}$, где l^{*} - эффективный пробег излучения в холодном воздухе, R - радиус кривизны затупленного тела, и параметр $\omega=(l / \delta)^{-1}$, где l - эффективный пробег излучения в нагретой зоне, а δ - характерная толщина ударного слоя. Если $\omega^{*} \leqslant 1$, то относительная роль поглощаемого в холодной зоне излучения уже будет характеризоваться параметром $W_{\omega} \omega^{* 2}$, поскольку будет иметь место рассеяние энергии излучения в окружающем обтекаемое тело пространстве. В случае $\omega \ll 1$ имеем объемное высвечивание в нагретой зоне.
2. Оценим возможные значения параметра ω^{*} при движении затупленного тела в плотных слоях атмосферы Земли. Известно, что холодный воздух прозрачен для излучения в видимой части спектра, а поглощает излучение в ультрафиолете и далеком ультрафиолете. В этих частях спектра поглощение будут давать фотоионизационные континиумы молекулярного и атомарното кислорода п азота п фотодиссоциация кислорода. На фиг. 1 приведены результаты последних исследований поперечных сечений указанных процессов, взятые из работ [5, ${ }^{5}$]. На фигуре кривые $1,2,3,4$ соответствуют сечению фотоионизационного поглощения атомарного азота, атомарного кислорода, молекулярного азота, молекулярного кислорода, а кривая 5 - сечению фотодиссоциации молекулярного кислорода.

Коәффициент поглощения излучения в холодном воздухе имеет вид

$$
\begin{equation*}
k_{\lambda}^{*}=\sum_{i} n_{i} \sigma_{\lambda i} \tag{2.1}
\end{equation*}
$$

Здесь $\sigma_{x i}$ - сечение поглощения i-го компонента воздуха на длине волны λ, n_{i} - концентрация i-го компонента. Коэффициент поглощения $k_{i}{ }^{*}$ будет линейно зависеть от концентрации компонентов воздуха, т. е. сильно меняться с высотой. На фит. 2 штриховой линией нанесена зависимость среднего эффективного пробега излучения в атмосферном воздухе $l^{*}=$ $=1 /\left\langle k^{*}\right\rangle$ от высоты. Осреднение величины коәффициента фотоионизационного поглощения излучения, вычисленного по формуле (2.1), производилось по диашазону поглощаемых длин волн. При помощи этого графика

можно оценить величину ω^{*} для нонкретных радиусов затупления. Так, нащример, для сферы радиуса $R=1 \boldsymbol{m}$ эффективный пробег излучения на высоте примерно 70 км сравним с радиусом сферы, а на высоте около 50 km - сравним с толщиной ударного слоя.
3. Остановимся далее на вопросе о значении дараметров W и ω. Основная часть излучательной способности ударного слоя, образующегося перед входящим в атмосферу Земли телом со скоростью порядка и выше второй космической, дается рекомбинацией на основное состояние атомов азота и кислорода ["] и излучением в спектральных линиях этих атомов [${ }^{8}$]. При этом весьма значительная часть рекомбинационного излучения и ряд сильных спектральных линий приходятся именно на те длины волн, которые интенсивно поглощаются в холодном воздухе. Это хорошо иллюстрирует фиг. 1 , на которой для $T=14000^{\circ} \mathrm{K}$ и давления 1 атм приведены результаты расчетов коәфффицдента поглощения воздуха по формулам работы ["] (сплошная линия) и взятые из работы ['] (штриховая линия). Излучение в линиях в области длин волн от 1200 до $1800 \AA$ приводит к фотодиссоциации кислорода. Как видно из фит. 1, в области фотоионизационного поглощения ($\lambda<1100 \AA$) пробег излучения в ударном слое порядка и меньше 1 см, это излучение там «заперто», и величину потока излучения из ударного слоя, поглощаемого в холодном воздухе, можно оценить по формуле

$$
\begin{equation*}
q=\frac{2 \pi}{c^{2} h^{3}}(k T) \cdot \int_{0}^{\infty} x^{3} e^{-x} d x \quad\left(\theta=\frac{h \nu}{k T}\right) \tag{3.1}
\end{equation*}
$$

где нижний предел интегрирования соответствует длинноволновой границе фотоионизации молекул кислорода. Результаты расчетов параметра W по формуле (1.3) и такой оценке поглощаемого потока излучения приведены на фиг. 2. Кривые 1,2 п 3 соответствуют скоростям движения $u_{\infty}=18,15$ п 12 км/сек.

Ревультаты расчетов параметра W говорят о том, что имеются режимы входа тел в плотные слои атмосферы Земли, когда значительная часть излучаемой из ударного слоя энертии поглощается перед летящим телом и приводит к определенному изменению параметров обтекающего воздушного потока.
4. Пусть сильная ударная волна движется в азоте. Ударная волна в аргоне рассмотрена в работе []. Будем считать, что с фронта сильной ударной волны с известными параметрами за скачком выходит. ноток излучения, который может приводить к фотоионизации молекулярного и атомарного азота.

Исследование скоростей химических реакций показало, что перед ударной волной в азоте основными будут:

реакция фотоионизации молекулярного азота

$$
\mathrm{N}_{2}+h v \rightarrow N_{2}^{+}+e
$$

реакция диссоциативной рекомбинации молеқулярного иона азота

$$
\mathbf{N}_{2}^{+}+e \rightarrow \mathbf{N}+\mathbf{N}
$$

реакция фотоионизации атомарного азота

$$
\mathrm{N}+h v \rightarrow N^{+}+e
$$

Для газа перед скачком можно записать уравнения движения

$$
\begin{gather*}
\rho(x) u(x)=\mathbf{p}_{\infty} u_{\infty} \tag{4.1}\\
\rho(x) u^{2}(x)+p(x)=\mathbf{p}_{\infty} u_{\infty}{ }^{2}+p_{\infty} \tag{4.2}\\
h(x)+\frac{u^{2}(x)}{2}-\frac{q(x)}{\rho_{\infty} u_{\infty}}=\frac{u_{\infty}{ }^{2}}{2}+h_{\infty}-\frac{q_{\infty}}{\rho_{\infty} u_{\infty}} \tag{4.3}
\end{gather*}
$$

Уравнение состояния газа перед волной

$$
\begin{equation*}
p(x)=k T(x)\left[\mathrm{N}_{2}(x)+\mathrm{N}(x)+\mathrm{N}_{2}^{+}(x)+\mathrm{N}^{+}(x)+e(x)\right] \tag{4.4}
\end{equation*}
$$

Выражение для энтальпии газа имеет вид

$$
\begin{gather*}
h(x)=\frac{k T(x)}{2 \rho(x)}\left\{7\left[\mathrm{~N}_{2}(x)+\mathrm{N}_{2}{ }^{+}(x)\right]+5\left[\mathrm{~N}(x)+\mathrm{N}^{+}(x)+e(x)\right]\right\}+ \\
\quad+\frac{\mathrm{N}_{2}{ }^{+}(x)}{\rho(x)} I_{m}+\frac{\mathrm{N}^{+}(x)}{\rho(x)} I_{a}+\frac{\mathrm{N}(x)}{\rho(x)} I_{d} \tag{4.5}
\end{gather*}
$$

Здесь u, ρ, p, h, T - соответственно скорость, плотность, давление, энтальпия и температура газа, координата x отсчитывается от фронта ударной волны навстречу натекающему потоку, индексом ∞ обозначены условия на бесконечности, $\mathrm{N}_{i}(x), \mathrm{N}_{i}{ }^{+}(x), e(x)$ представляют собой число ччастиц, ионов и электронов в с $^{3}, q(x)$ - поток энергии излучения, I_{m} :энергия ионизации молекулярного азота, I_{a} - энергия ионизации атомарного азота, I_{d} - энергия диссодиации молекулярного азота. К этим уравне:ниям следует добавить уравнения химической кинетики, записанные для каждого компонента

$$
\begin{gather*}
u(x) \frac{d \mathrm{~N}_{2}(x)}{d x}=\sigma_{m} \mathrm{~N}_{2}(x) q_{m}(x) \tag{4.6}\\
u(x) \frac{d \mathrm{~N}_{2}{ }^{+}(x)}{d x}=-\sigma_{m} \mathrm{~N}_{2}(x) q_{m}(x)+\beta \mathrm{N}_{2}{ }^{+}(x) e(x) \tag{4.7}
\end{gather*}
$$

$$
\begin{gather*}
u(x) \frac{d e(x)}{d x}=-\sigma_{m} \mathrm{~N}_{2}(x) q_{m}(x)+\beta \mathrm{N}_{2}{ }^{+}(x) e(x)-\sigma_{a} \mathrm{~N}(x) q_{a}(x) \tag{4.8}\\
u(x) \frac{d \mathrm{~N}(x)}{d x}=\sigma_{a} \mathrm{~N}(x) q_{a}(x)-2 \beta \mathrm{~N}_{2}{ }^{+}(x) e(x) \tag{4.10}\\
u(x) \frac{d \mathrm{~N}^{+}(x)}{d x}=-\sigma_{a} \mathrm{~N}(x) q_{a}(x) \tag{4.9}
\end{gather*}
$$

и уравнения для диссипации излучения перед фронтом ударной волны, которые будут записаны ниже.

В уравнениях (4.6)-(4.10) σ_{m} и $\sigma_{a}\left[\mathcal{c m}^{2}\right]$ - сечения фотоионизации молекул и атомов азота, β [см ${ }^{3} \cdot$ сек $\left.^{-1}\right]$ - константа скорости диссоциативной рекомбинации, q_{m} и $q_{a}\left[\right.$ cm $\left.^{-2} \cdot с е \kappa^{-1}\right]$ - потоки фотонов, которые могут ионизовать молекулы и атомы азота.

Если считать, что спектр выходящего с фронта сильной ударной волны потока излучения близок к планковскому, то q_{m} и q_{a} у фронта ударной волны следует определять так:

$$
\begin{gathered}
q_{m}(0)=\pi \int_{v_{m}}^{\infty} \frac{B_{v}(T)}{h v} d v, q_{a}(0)=\pi \int_{v_{a}}^{\infty} \frac{B_{v}(T)}{h v} d v . \\
q(0)=\pi \int_{v_{a}}^{\infty} B_{v}(T) d v
\end{gathered}
$$

где $B_{v}(T)$ - функция Планка, а $h \nu_{m}=15.6$ эв и $h v_{a}=14.6$ эв - пороговые энергии ионизации молекулярного и атомарного азота.

Удобно кроме q ввести q_{1} и q_{2} следующим образом:

$$
q_{1}(0)=\pi \int_{v_{a}}^{v_{m}} B_{v}(T) d v_{\star} \quad q_{2}(0)=\pi \int_{v_{m}}^{\infty} B_{v}(T) d v
$$

Можно с достаточной степенью точности представить выражения для нотока фотонов в виде

$$
q_{m}(x)=\frac{q_{2}(x)}{h v_{m}}, \quad q_{a}=\frac{q(x)}{h v_{a}}
$$

и записать уравнения для диссипации излучения

$$
\begin{gather*}
\frac{d q_{2}(x)}{d x}=-\sigma_{m} \mathrm{~N}_{2}(x) q_{2}(x)-\sigma_{a} \mathrm{~N}(x) q_{2}(x), \quad \frac{d q_{1}(x)}{d x}=-\sigma_{a} N(x) q_{1}(x) \tag{4.11}\\
q(x)=q_{1}(x)+q_{2}(x)
\end{gather*}
$$

Введем следующие безразмерные переменные:

$$
\begin{gather*}
u=\frac{u(x)}{u_{\infty}} ; \quad \rho=\frac{\rho(x)}{\rho_{\infty}}, \quad p=\frac{p(x)}{\rho_{\infty} u_{\infty}{ }^{2}}, \quad h=\frac{2 h(x)}{u_{\infty}{ }^{2}} \\
q=\frac{q(x)}{q(0)}, \quad q_{1}=\frac{q_{1}(x)}{q(0)}, \quad q_{2}=\frac{q_{2}(x)}{q(0)} \tag{4.12}\\
T=\frac{k T_{\infty}}{2 m_{a} u_{\infty}{ }^{2}}, \quad\left[\mathrm{~N}_{i}\right]=\frac{\mathrm{N}_{i}(x) \rho_{\infty}}{\mathrm{N}_{2 \infty} \rho(x)}, \quad x=x_{p} \mathrm{~N}_{2 \infty} \sigma_{m}
\end{gather*}
$$

С учетом последних выражений система уравнений (4.1) - (4.11) примет вид

$$
\begin{gather*}
\rho u=1 \tag{4.13}\\
\rho u^{2}+\rho T\left\{\left[\mathrm{~N}_{2}\right]+\left[\mathrm{N}_{2}{ }^{+}\right]+[\mathrm{N}]+\left[\mathrm{N}^{+}\right]+[e]\right\}=1+p_{\infty} \\
T\left\{7\left(\left[\mathrm{~N}_{2}\right]+\left[\mathrm{N}_{2}{ }^{+}\right]+5\left([\mathrm{~N}]+\left[\mathrm{N}^{+}\right]+[e]\right)\right\}+\mathrm{Z}_{1}\left[\mathrm{~N}_{2}^{+}\right]+\right. \\
+\mathrm{Z}_{2}\left[\mathrm{~N}^{+}\right]+\mathrm{Z}_{3}[\mathrm{~N}]+u^{2}-W q=1+h_{\infty}-W q_{\infty} \\
\frac{d\left[\mathrm{~N}_{2}\right]}{d x}=Y_{1} \frac{q_{2}}{u}\left[\mathrm{~N}_{2}\right], \quad \frac{d\left[\mathrm{~N}_{2}{ }^{+}\right.}{d x}=-Y_{0} \frac{q_{2}}{u}\left[\mathrm{~N}_{2}\right]+X_{1}\left[\mathrm{~N}_{2}{ }^{+}\right][e] \\
\frac{d[\mathrm{~N}]}{d x}=Y_{1} \frac{q}{u}[\mathrm{~N}]-2 X_{1}\left[\mathrm{~N}_{2}+\right][e], \quad \frac{d\left[\mathrm{~N}^{+}\right]}{d x}=-Y_{1} \frac{q}{u}[\mathrm{~N}] \\
\quad[e]=\left[\mathrm{N}_{2}^{+}\right]+\left[\mathrm{N}^{+}\right], \quad q=q_{1}+q_{2} \\
\frac{d q_{2}}{d x}=-q_{2} \rho\left[\mathrm{~N}_{2}\right]-X_{2} q_{2} \rho[\mathrm{~N}], \quad \frac{d q_{1}}{d x}=-X_{2} q_{1} \rho[\mathrm{~N}]
\end{gather*}
$$

В полученных уравнениях (4.13) параметры

$$
\begin{gathered}
W=\frac{2 q(0)}{\rho_{\infty} u_{\infty}{ }^{3}}, \quad Y_{0}=\frac{q(0)}{u_{\infty} N_{2 \infty} h v_{m}} \\
Y_{1}=\frac{q(0)}{u_{\infty} N_{2 \infty} h v_{a}}, \quad X_{1}=\frac{\beta}{\sigma_{m} u_{\infty}}, \quad X_{2}=\frac{\sigma_{a}}{\sigma_{m}} \\
Z_{1}=\frac{I_{m}}{m_{a} u_{\infty}{ }^{2}}, \quad Z_{2}=\frac{I_{a}}{m_{a} u_{\infty}{ }^{2}}, \quad Z_{3}=\frac{I_{d}}{2 m_{a} u_{\infty}{ }^{2}}
\end{gathered}
$$

Граничные условия для системы (4.13) следующие:

$$
\begin{gather*}
u(\infty)=\rho(\infty)=1, \quad\left[\mathrm{~N}_{2}\right]_{\infty}=1, \quad\left[\mathrm{~N}_{i}\right]_{\infty}=0 \\
q_{\infty}=q_{1}(\infty), \quad q(0)=1 \tag{4.14}
\end{gather*}
$$

причем $q_{1}(\infty)$ подбирается таким образом, чтобы на скачке уплотнения одновременно с $q(x) \rightarrow 1 q_{1}(x) \rightarrow q_{1}(0)$.

Система уравнений (4.13) с граничными условиями (4.14) описывает изменение состояния и состава газа перед фронтом ударной волны, вызванное поглощением опережающего излучения.

Рассмотрим сначала наиболее простой случай - отсутствие рекомбинации в газе перед ударной волной. Предположим, что поглощение излучения перед ударной волной вызывает пренебрежимо малое изменение температуры. Можно считать, что величины

$$
p(\infty) \ll 1, h(\infty) \ll 1 \text { и } \rho(x) \approx 1, u(x) \approx 1, T(x) \approx 0
$$

Тогда система уравнений (4.13) существенно упрощается и сводится к следующим уравнениям:

$$
\begin{gather*}
\alpha\{e\} Z_{1}=W q_{2}(x), \quad \frac{d \alpha\{e\}_{4}}{d x}=-Y_{0} \alpha\left\{\mathrm{~N}_{2}\right\} q_{2}(x) \tag{4.15}\\
\frac{d \alpha\left\{N_{2}\right\}}{d x}=Y_{0} \alpha\left\{N_{2}\right\} q_{2}(x)
\end{gather*}
$$

Здесь

$$
\alpha\left\{\mathrm{N}_{i}\right\}=\frac{\mathrm{N}_{i}}{\mathrm{~N}_{2 \infty}} \text { и } \alpha\{e\}=\alpha\left\{\mathrm{N}_{2}^{+}\right\}
$$

При $x \rightarrow \infty \quad \alpha\left\{\mathrm{~N}_{2}\right\}=1, \alpha\{e\}=0, q_{2}=0$; на фронте ударной волны при $x=0 \quad q_{2}=1$.

Решение системы уравнений (4.15) имеет вид

$$
\begin{equation*}
x\{e\}=\frac{W}{Z_{1}}\left[\left(1-\frac{W}{Z}\right) e^{x}+\frac{W}{Z_{1}}\right]^{-1} . \quad q_{2}(x)=\left[\left(1-\frac{W}{Z_{1}}\right) e^{x}+\frac{W}{Z_{1}}\right]^{-1} \tag{4.16}
\end{equation*}
$$

Эти выражения при $W / Z_{1} \ll 1$ переходят в экспоненты. При этом плотность электронов непосредственно перед фронтом ударной волны будет определяться соотношением

$$
\alpha\{e\}=\frac{W}{Z_{1}}=\frac{q_{2}(0)}{u_{\infty} N_{2 \infty} h v_{m}}
$$

Полная система уравнений (4.13) решалась на ЭВМ методом последоватөльных приближений. Для начальной координаты x° задавались начальные значения $\left[\mathrm{N}_{2}{ }^{+}\right]$п $q_{1}\left(x^{\circ}\right)$, а значение $q_{2}\left(x^{\circ}\right)$ определялось из уравнений.

Фиг. 3

Фиг. 4

энергии. В процессе решения подбирались координаты x° и $q_{1}\left(x^{\circ}\right)$ таким образом, чтобы в точке $x=0$ полный поток q и q_{1} равнялись свокм значениям на фронте ударной волны.

Для расчета состава константа скорости диссоциативной рекомбинации: $\beta=10^{-7} \mathrm{~cm}^{3} \cdot$ сек $^{-1}$ взята из обзора $\left[{ }^{10}\right]$, а сечения фотоионизации молекул и атомов азота приняты постоянными $\sigma_{a}=\sigma_{m}=5 \cdot 10^{-18} \mathrm{~cm}^{2}$. В работе в качестве примера приводятся два варианта расчета, когда по азоту с начальными параметрами $p_{\infty}=2.5 \cdot 10^{-4}$ атм, $T_{\infty}=255^{\circ} \mathrm{K}, \mathrm{N}_{2 \infty}=7.2 \cdot 10^{15} \mathrm{~cm}^{-3}$. движется ударная волна со скоростями $u_{\infty 1}=15 \mathrm{~km} /$ сек и $u_{\infty 2}=17 \mathrm{\kappa m} / с е к$. Рассчитанные для этих случаев значения параметра $W_{1}=0.0075$ и $W_{2}=$ $=0.1$. На фиг. 3 в зависимости от координаты x построено распределение относительного числа частиц $[e],\left[\mathrm{N}_{2}{ }^{+}\right],[\mathrm{N}],\left[\mathrm{N}^{+}\right]$перед ударной волной для скоростей $u_{\infty 1}$ (сплошная линия) и $u_{\infty 2}$ (штриховая линия). На фиг. 4 для тех же значений скоростей построены распределения температуры T и потоков q и q_{1}.
5. Результаты расчетов течения газа перед ударной волной показали значительное изменение состава газа, нөкоторое увеличение его температуры и совсем незначительное изменение плотности и скорости газа перед фронтом. Однано эти «предшествующие» эффекты резко усиливаются с ростом параметра W.

Очевидно, что изменение состава и темшературы газа перед ударной волной, вызванное потлощением опережающего излучения, приведет к изменению картины химически неравновесной области и в конечном счете, как это отмечено в I. 1, равновесных параметров газа за ударной волной.

Поэтому для получения правильной картины гиперзвукового обтекания затупленных тел с учетом излучения необходимо решать совместную задачу, учитывающую взаимное влияние поглощения опережающего излучения перед ударной волной и течения газа в ударном слое.

ЛИТЕРАТУРА

1. Lin S. C. Radio echoes from manned sattelite during Re-Entry. J. Geophys. Res., 1962, vol. 67, No. 10, p. 3851.
2. Lederman S., Wilson D. S. Microwave resonant cavity measurement of shock produced electron precursors. AIAA Journal, 1967, vol. 5, No. 1, p. 70.
3. ЗельдовичЯ. Б. Райзер Ю. П. Физика ударных волни высокотемпературных гидродинамических явлений. М., Физматгиз, 1963.
4. Жигулев В. Н., Ромипевскй Е. А., Вертупкин В. К. О роли излучения в современных вопросах газовой динамики. Инж. ж., 1961, т. 1, вып. 1, crp. 60 .
5. Спектры звезд в далеком ультрафиолете. М., «Мир», 1964, стр. 174.
6. Уиттен Р. К., Поппов И. Д. Физика нижней атмосферы. М., "Мир», 1968 ,
7. Nelson H. F., Goulard R. Structure of shock waves with nonequilibrium radiation and ionisation. Phys. Fluid, 1969, vol. 12. No. 8, p. 1605.
8. АвиловаИ. В., Биберман Л. М., Воробьев В. С., Замалин В. М., Кобзев Г. А., Лагарьков А. И., Мнадаканян, А. Х., Норман Г. Э. Оптические свойства горячего воздуха. J. Quant. Spectroscop. Radiat. Trans., 1969, vol. 9, No. 1, p. 89.
9. Коньков А. А.. Нейланд В. Я., Николаев В. М., Пластинин Ю. А. Проблемы лучистого теплообмена в гишеравуковой аәродинамике. Теплофизика высоких температур, 1969, т. 7, вып. 1, стр. 140.
10. Данилов А. Д., Иванов-Холодный Г. С. Исследование ионно-молекулярных реакций и диссоциативной рекомбинации в верхней атмосфере и в лабора-тории. Усп. физ. н., 1965, т. 85, вып. 2, стр. 259—296.
