О КРИТЕРИЯХ ОТРЫВА ТРЕХМЕРНОГО ПОГРАНИЧНОГО СЛОЯ

Г. М. БАМ-ЗЕЛИКОВИЧ
(Москва)

В предположении, что характер течения в данном сечении пограничного слоя зависит только от поведения внешнего потока в малой окрестности рассматриваемого сечения, выведены критерии отрыва ламинарного и турбулентного пограничного слоя при трехмерном течении. Найденные критерии отрыва являются следствием полученного в работе [${ }^{1}$] необходимого условия отрыва трехмерного пограничного слоя.

1. При рассмотрении двумерного пограничного слоя часто пользуются критериями отрыва, т. е. соотношениями между параметрами, выполняющимися с большой степенью точности в точке отрыва и позволяющими оценить возможность наступления отрыва. Критерий отрыва может быть получен из тех или иных приближенных методов расчета погранично்о слоя с использованием необходимого условия отрыва, но может быть также выведен непосредственно из тех физических предположений, на которые фактически опираются приближенные методы. Этот последний путь, развитый для двумерного пограничного слоя в работе $\left[{ }^{2}\right]$, позволяет получить также критерий отрыва трехмерного слоя.

Попытка найти критерий отрыва трехмерного пограничного слоя была сделана в []. Однако, не имея локальных свойств линии отрыва и не привлекая дополнительных соображений, о которых речь будет идти ниже, авторы смогли лишь получить, что комбинация величин, аналогичная параметру отрыва двумерного пограничного слоя, является функцией ряда аргументов, в том числе отношения производных давления вдоль и по нормали к линии отрыва и отношения нормальной к линии отрыва компоненты скорости внешнего потока к полной скорости. Ни вид функциональной зависимости от этих параметров, ни их значения заранее не известны (их значения нельзя рассчитать до того, как будет найдено направление линии отрыва). Поэтому и применение этих общих функциональных зависимостей невозможно.

Для вывода критерия отрыва необходимо прежде всего иметь необходимое условие отрыва. При двумерном течении в пограничном слое таким условием является требование, чтобы в какой-либо точке было $\tau_{w}=0$. В работе [${ }^{1}$] показано, что в случае трехмерного течения в пограничном слое за необходимое условие отрыва может быть принято соотношение

$$
\begin{equation*}
\tau_{w} \cdot \operatorname{grad} p=0, \quad \mathbf{U} \cdot \operatorname{grad} p>0 \tag{1.1}
\end{equation*}
$$

Основным предположением, позволяющим получить критерий отрыва двумерного пограничного слоя, является предположение о том, что характер течения в данном сечении пограничного слоя зависит только от поведения потока в малой окрестности этого сечения. В случае двумерного пограничного слоя справедливость этого допущения подтверждается многочисленными экспериментальными данными [${ }^{2}$].

Естественно предположить, что и в случае трехмерного пограничного слоя течение в рассматриваемом сечении зависит лишь от поведения потока в малой окрестности. Следует заметить, однако, что в настоящее время нет достаточно полных экспериментальных данных по отрыву трехмерного пограничного слоя, позволяющих установить границы справедливости этого

предположения. В дальнейшем будем принимать, что рассматриваются такие случаи течения в трехмерном пограничном слое, когда эта гипотеза выполняется с достаточной степенью точности.
2. Обобщим на трехмерное течение метод вывода параметра отрыва, данный в работе [${ }^{2}$]. Высказанное выше предположение означает, что параметры потока вне пограничного слоя можно разложить в окрестности данной точки в ряды и ограничиться членами первого порядка малости. При этом, чтобы задать давление в малой окрестности, необходимо задать значение p в рассматриваемом сечении и вектор $\operatorname{grad} p=\pi$. Под окрестностью точки при задании внешнего потока в задачах о пограничном слое надо понимать малую область на поверхности, являющейся границей пограничного слоя. Поэтому π и все рассматриваемые в дальнейшем вектора являются плоскими векторами, лежащими в касательной плоскости к этой граничной поверхности.

Для задания плотности с точностью до величин второго порядка малости необходимо знать значение ρ в данной точке и значение $\operatorname{grad} \rho$. Так как поток вне пограничного слоя невязкий и нетеплопроводный, то плотность и давление связаны соотношением

$$
p=C(s) \rho^{\star}
$$

где энтропия s постоянна вдоль линии тока (если в окрестности рассматриваемого сечения нет скачков) и может быть различной на разных лини ях тока. Из этого уравнения следует, что $\operatorname{grad} \rho$ выражается через $\boldsymbol{\pi}$ и $\sigma=$ $=\operatorname{grad} s$. Задавать вектор σ вместо $\operatorname{grad} \rho$ целесообразнее потому, что направление σ по отношению к другим векторам не произвольно. Так как энтропия постоянна вдоль линии тока, то градиент энтропии перпендикулярен касательной к линии тока, т. е. вектору скорости \mathbf{U}.

Чтобы задать скорость внешнего потока в малой окрестности, необходимо иметь величину и направление скорости. Поэтому необходимо знать значение вектора скорости \mathbf{U} в данной точке, а также значение $\operatorname{grad} U$ $(U=|\mathbf{U}|)$ и $\operatorname{grad} \alpha$, где $\alpha-$ угол скорости с некоторым фиксированным направлением. Из интеграла Бернулли

$$
{ }^{1} / 2 U^{2}+x p /(x-1) \rho=i_{0}
$$

где i_{0} может быть различным на разных линиях тока, $\operatorname{grad} U$ может быть выражен через $\boldsymbol{\pi}, \boldsymbol{\sigma}$ и $\operatorname{grad} i_{0}=\mathbf{I}$.

Вектор I целесообразно задавать вместо $\operatorname{grad} U$, так как он так же, как и $\boldsymbol{\sigma}$, перпендикулярен касательной к линии тока. Изменение угла α вдоль линии тока может быть определено из уравнения движения через уже известные величины. Таким образом, для задания $\operatorname{grad} \alpha$ требуется задать дополнительно лишь его проекцию на нормаль к линии тока, т. е. величину $A=\mathbf{n} \cdot \operatorname{grad} \alpha$, где \mathbf{n} - единичный вектор нормали к линии тока, проходящей через рассматриваемую точку.

Итак, параметры внешнего потока в малой окрестности рассматриваемого сечения определяются заданием в данном сечении следующих величин:

$$
p, \rho, \mathbf{U}, \boldsymbol{\pi}=\operatorname{grad} p, \quad \boldsymbol{\sigma}=\operatorname{grad} s, \quad \mathbf{I}=\operatorname{grad} i_{0}, \quad A=(\mathbf{n}, \operatorname{grad} \alpha), \chi
$$

К ним необходимо присоединить для определения параметров пограничного слоя характерный размер пограничного слоя z и характерное значение вязкости μ. Для простоты стенку будем считать теплоизолированной и тепловые процессы рассматривать не будем, хотя все рассуждения остаются справедливыми и для случая обтекания поверхности с произвольным распределением температуры.

Два векторных параметра \mathbf{U} и π дают три независимых скалярных параметра, инвариантных по отношению к преобразованию системы координат, от которых могут зависеть скалярные искомые функции

$$
U=|\mathbf{U}|, \quad \pi=|\pi|, \quad \cos \varphi=(\mathbf{U}, \pi) / U \pi
$$

где φ - угол между векторами \mathbf{U} и π. Вектора σ и \mathbf{I} дают дополнительно только по одному независимому скалярному параметру, так как их скалярное произведение с вектором скорости \mathbf{U} всегда равно нулю. За эти скалярные параметры могут быть приняты величины σ и I, равные модулям соответствующих векторов, взятым со знаком плюс, если поворот от \mathbf{U} к $\boldsymbol{\sigma}$ (или I соответственно) происходит в ту же сторону, что и от \mathbf{U} к л, и со знаком минус, если - в обратную. Таким образом получаем систему одиннадцати независимых скалярных определяющих размерных параметров для данного сечения трехмерного пограничного слоя

$$
U, p, \rho, \pi, \cos \varphi, \sigma, I, A, \mu, z, x
$$

Из них можно образовать восемь независимых безразмерных комбинаций, от которых должны зависеть все искомые безразмерные величины

$$
\begin{gather*}
M=\left(\rho U^{2} / x p\right)^{1 / 2}, \quad R=\rho U z / \mu, \quad \xi_{t}=\pi z / \rho U^{2} \tag{2.1}\\
\Sigma=\sigma z, \quad \rho I z / p, \quad a=A z, \quad \cos \varphi, \quad x
\end{gather*}
$$

В подавляющем большинстве практически интересных случаев величина i_{0} постоянна во всем потоке (в том числе и при наличии ударных волн). Для таких течений $I \equiv 0$. Если течение дозвуковое или сверхзвуковое без ударных волн, то обычно энтропия также постоянна во всем потоке и $\Sigma \equiv 0$. В сверхзвуковом потоке за слабыми или слабоискривленными ударными волнами энтропия меняется не сильно, т. е. Σ малая величина, которую можно приближенно считать равной нулю. Поэтому для простоты дальнейшие рассуждения проведем для случая, когда можно принять $I=0$ п $\Sigma=0$, хотя все сказанное ниже остается справедливым и при I п Σ, отличных от нуля.

Если направления векторов \mathbf{U} и π не совпадают, то любой вектор, лежащий в касательной плоскости к обтекаемой поверхности, может быть разложен по этим направлениям. Введем единичные вектора

$$
\mathbf{e}_{1}=\mathbf{U} / U, \quad \mathbf{e}_{2}=\pi / \pi
$$

Тогда вектор напряжения трения на стенке τ_{w} может быть представлен в виде

$$
\tau_{v} / \rho U^{2}=\mathbf{e}_{1} f_{1}\left(M, R, \xi_{t}, a, \cos \varphi, x\right)+\mathbf{e}_{2} f_{2}\left(M, R, \xi_{t}, a, \cos \varphi, x\right)
$$

Ряд общих соображений позволяет найти вид зависимости f_{1} и f_{2} от некоторых из их аргументов. Предположим, прежде всего, что градиент давления стремится по величине к нулю, оставаясь постоянным по направлению, т. е. $\pi \rightarrow 0$, а е $\mathbf{e}_{2}=$ const. Очевидно, что при течении без градиента давления напряжение трения на стенке имеет направление скорости внешнего потока и определенную величину, не зависящую от направления, которое имел градиент давления. Это значит, что $f_{2} \rightarrow 0$ при $\pi \rightarrow 0$, а f_{1} не зависит от $\cos \varphi=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$, так как $\cos \varphi$ может иметь произвольное значение.

Параметр a имеет порядок z / L, где L - характерный размер тела, т. е. является величиной малой. В области торможения параметр ξ_{t} также мал (для несжимаемого двумерного пограничного слоя, например, $\xi_{t} \leqslant \xi_{t}{ }^{0}=$ $=0.015$). Кроме того, в теории пограничного слоя величина $1 / R$ всегда считается малой. Поэтому разложим f_{1} и f_{2} в ряд по степеням $1 / R, \xi_{t}$ и а

и ограничимся членами первого порядка малости

$$
\begin{gather*}
\tau_{w} / \rho U^{2}=\mathbf{e}_{1}\left[f_{10}+(1 / R) f_{11}+\xi_{t} f_{12}+a f_{13}\right]+ \\
+\mathbf{e}_{2}\left[f_{20}+(1 / R) f_{21}+\xi_{t} f_{22}+a f_{23}\right] \tag{2.2}
\end{gather*}
$$

где $f_{i k}$ есть функции числа M, χ и $\cos \varphi$.
Так как л входит только в безразмерный параметр ξ_{t}, то $\xi_{t} \rightarrow 0$ при $\pi \rightarrow 0$, а остальные параметры остаются неизменными. Поэтому из предыдущих рассуждений следует, что $f_{20} \equiv 0, f_{21} \equiv 0, f_{23} \equiv 0$, а f_{10}, f_{11} и f_{13} не зависят от $\cos \varphi$. Выражение (2.2) может быть теперь записано в виде

$$
\begin{equation*}
\boldsymbol{\tau}_{w}=\mathbf{e}_{1}\left(f_{10} \rho U^{2}+f_{11} U \mu / z+f_{12} \pi z+f_{13} z \rho U^{2} A\right)+\mathbf{e}_{2} f_{22} \pi z \tag{2.3}
\end{equation*}
$$

Предположим далее, что $U \rightarrow 0$ при сохранении остальных параметров неизменными. При этом течение внутри пограничного слоя будет определяться градиентом давления. И, следовательно, направление движения у стенки и направление τ_{w} будут совпадать с е 2 . Отсюда заключаем, что так как в (1.3) коэффициент при f_{12} остается конечным, а коэффициенты при f_{10}, f_{11} и f_{13} стремятся к нулю, то должно быть $f_{12} \equiv 0$. Кроме того, в силу определенности предельного значения f_{22} не зависит от $\cos \varphi$. Итак

$$
\begin{equation*}
\tau_{v} / \rho U^{2}=\mathbf{e}_{1}\left(f_{10}+f_{11} / R+f_{13} a\right)+\mathbf{e}_{2} f_{22} \xi_{t} \tag{2.4}
\end{equation*}
$$

причем f_{10}, f_{11}, f_{13} и f_{22} могут зависеть только от M и χ.
Следует отметить, что все предыдущие рассуждения не предполагали какого-либо определенного характера течения в пограничном слое, поэтому формула (2.4) справедлива как для ламинарного, так и для турбулентного пограничного слоя.

Необходимым условием отрыва является, как было указано выше, ортогональность направления пристеночной линии тока и градиента давления. Умножив равенство (2.4) скалярно на е \mathbf{e}_{2} и используя условие (1.1), получим искомое соотношение между параметрами, являющееся критерием отрыва

$$
\begin{equation*}
\cos \varphi\left(f_{10}+f_{11} / R+f_{13} a\right)+f_{22} \xi_{t}=0 \tag{2.5}
\end{equation*}
$$

3. В ламинарном пограничном слое при числе Рейнольдса $R \rightarrow \infty$ характерный размер пограничного слоя стремится к нулю. Следовательно, $\xi_{t} \rightarrow 0$ и $a \rightarrow 0$, а так как f_{10} остается конечным, то для ламинарного пограничного слоя должно быть $f_{10} \equiv 0$. При этом (2.5) дает, если вместе R и ξ_{t} подставить их выражения (2.1)

$$
\xi_{l}=\pi z^{2} / U \mu=\left[B_{1}(M, x)+C_{1}(M, x) A \rho U z^{2} / \mu\right] \cos \varphi
$$

Функция $B_{1}(M, x)$ может быть определена из решения задачи об отрыве двумерного пограничного слоя. При течении в двумерном пограничном слое с торможением векторы \mathbf{U} и grad p совпадают по направлению, поэтому в точке отрыва двумерного слоя [${ }^{1}$]

$$
\cos \varphi=1, \quad \pi=p_{x}^{\prime}, \quad A=0, \quad \xi_{l}=p_{x}^{\prime} z^{2} / U \mu=\xi_{l}^{\circ}(M, x)
$$

Таким образом, $B_{1}(M, x)=\xi_{l}{ }^{\circ}$, и критерий отрыва трехмерного ламинарного пограничного слоя приобретает вид

$$
\begin{equation*}
\xi_{l}=\pi z^{2} / U \mu=\left(\xi_{l}^{\circ}+C_{1} A \rho U z^{2} / \mu\right) \cos \varphi \tag{3.1}
\end{equation*}
$$

В турбулентном пограничном слое характерный размер z, а следовательно, a и ξ_{t} слабо зависят от числа Рейнольдса R, и при $R \rightarrow \infty$ можно пренебречь вторым членом в скобках в равенстве (2.5).

При әтом получаем

$$
\begin{equation*}
\xi_{t}=\pi z / \rho U^{2}=\left[B_{2}(M, x)+C_{2}(M, x) A z\right] \cos \varphi \tag{3.2}
\end{equation*}
$$

Рассмотрим снова отрыв двумерного пограничного слоя. В точке отрыва турбулентного двумерного пограничного слоя

$$
\cos \varphi=1, \quad \pi=p_{x}^{\prime}, \quad A=0, \quad \xi_{t}=p_{x}^{\prime} z / \rho U^{2}=\xi_{t}^{\circ}(M, x)
$$

Следовательно, $B_{2}(M, x)=\xi_{t}{ }^{\circ}$ и формула (3.2) для критерия отрыва турбулентного трехмерного пограничного слоя принимает вид

$$
\begin{equation*}
\xi_{t}=\pi z / \rho U^{2}=\left(\xi_{t}{ }^{\circ}+C_{2} A z\right) \cos \varphi \tag{3.3}
\end{equation*}
$$

Подчеркнем еще раз, что $\xi_{l}{ }^{\circ}, \xi_{t}{ }^{\circ}, C_{1}$ и C_{2} в формулах (3.1) и (3.3) являются функциями только числа M и x, причем $\xi_{l}{ }^{\circ}, \xi_{t}{ }^{\circ}$ могут быть определены из данных об отрыве двумерного пограничного слоя. Левые части этих формул имеют тот же вид, что и в двумерном случае. Члены с C_{1} и C_{2} учитывают могущий быть существенным в трехмерном течении эффект непараллельности векторов скорости внешнего потока в районе точки отрыва, а множитель $\cos \varphi$ учитывает непараллельность вектора скорости внешнего потока и вектора градиента давления. Если изменение энтропии в потоке существенно, то в скобке в правой части в формулах (3.1) и (3.3) будет стоять еще один член, пропорциональный Σ.
4. В качестве примера приложения полученных критериев отрыва рассмотрим вопрос о положении линии отрыва при обтекании бесконечного круглого конуса сверхзвуковым потоком, направленным под некоторым углом атаки. Так как в возникающем коническом течении вдоль образующей все параметры внешнего потока постоянны, то градиент давления направлен перпендикулярно образующей. В силу того что течение в различных сечениях конуса подобно, абсолютная величина градиента давления и градиента угла скорости будет обратно пропорциональна характерному линейному размеру внешнего потока в рассматриваемом сечении (или расстоянию L рассматриваемой точки от вершины конуса, так как в силу подобия характерный размер в данном сечении пропорционален L), т. е. $\pi \sim 1 / L, A \sim 1 / L$. В случае ламинарного пограничного слоя характерный размер пограничного слоя z пюопорционален корню из характерного размера внешнего потока $z \sim L^{0.5}$.

Следовательно, величины л z^{2} и $A z^{2}$ вдоль образующей не зависят от расстояния от вершины конуса. Из формулы (3.1) видно, что при этом ξ_{\imath} сохраняет свое значение вдоль образующей ($\rho, U, \cos \varphi$, как указывалось выше, вдоль образующей постоянны). Таким образом, ξ_{l} достигает своего критического значения сразу во всех точках какой-либо образующей конуса, т. е. граница зоны обратных токов совпадает с образующей. А так как образующая перпендикулярна градиенту давления, то граница зоны обратных токов является пристеночной линией тока и линией отрыва [${ }^{1}$].

В случае турбулентного пограничного слоя с принятой степенью точности (пренебрежение зависимостью характерного размера пограничного слоя от числа Рейнольдса R) $z \sim L$. Позтому πz и $A z$ сохраняют свое значение вдоль образующей. И формула (3.3) для критерия отрыва турбулентного пограничного слоя показывает, что и при турбулентном пограничном слое ξ_{t} достигает значения, при котором возможен отрыв, одновременно во всех точках некоторой образующей конуса, которая и будет линией отрыва.

Тот факт, что на остром конусе линия отрыва совпадает с образующей конуса, хоропо согласуется с экспериментальными данными работ [3, 4] .

Поступило 22×1969

ЛИТЕРАТУРА

1. Бам-Зеликович Г. М. О необходимом условии отрыва трехмерного нограничного слоя. Изв. АН СССР, МЖГ, 1970, № 2.
 1954, № 12.
2. Авдуевский В. С., Медведев К. И. Отрыв трехмерного пограничного слоя. Изв. АН СССР, МЖГ, 1966, № 2.
3. Авдуевский В. С., Медведев К. И. Исследование отрыва ламинарного пограничного слоя на конусе под углом атаки. Изв. АН СССР, МЖГ, 1966, 으 3.
