СИЛЬНЫЙ ВЗРЫВ В ГОРЮЧЕЙ СМЕСИ ГАЗОВ

В. І. КОРОБЕЙНИКОВ, В. А. ЛЕВИН

(Moсква)
Пусть в горючей смеси газов произошел плоский, цилиндрический или сферический точечный взрыв. В ревультате взрыва возникает сильная ударная волна, которая включает механизм химических реакций с выделением тепла. Решение задачи для случая пренебрежения толщиной зоны тепловыделения (модель бесконечно-тонкой детонационной волны) было изучено в работах [${ }^{1-3}$].

Как было подчеркнуто в [4], әти решения могут рассматриваться лишь как асимптотические для масштабов времөни и расстояния больших по сравнению с масштабами, характерными для протекания химических реакций, и в предположении, чтю образовавшаяся при взрыве пересжетая детонационная волна при ослаблении ее волнами разрежения не вырождается в обычный скачок уплотнения. При этом остается открытым вопрос о возможности получения таких асимптотических решений при учетө конечных скоростей химических реакций.

Рассмотрим следующие простые модели течения газа с учетом конечной скорости химических реакций:

1) модель двух фронтов: ударная волна и следующий за ней фронт пламени, где происходит полное тепловыделение Q в единице массы газа;
2) модель включения химической реакции с выделением тепла в поток за фронтом ударной волны после прохождения периода индукции; при этом учитывается и обратная реакция.

Уравнения, описывающие протекание химических реакций, возьмем в виде аррениусовских зависимостей ($\tau *$ - время индукции)

$$
\begin{gather*}
\frac{d c}{d t}=-\frac{1}{\tau_{*}}=-k_{1} p^{n_{1}} \rho^{l_{1}} \exp \frac{-E_{1} \rho}{p} \tag{1}\\
\frac{d \beta}{d t}=-k_{2} \beta^{m_{1}} p^{n_{2}} \rho^{l_{2}} \exp \frac{-E_{2} \rho}{p}+k_{3}(1-\beta)^{m_{2}} p^{n_{3}} \rho^{l_{3}} \exp \frac{-E_{3 \rho} \rho}{p} \tag{2}
\end{gather*}
$$

До начала реакции (2) считается, что $\beta=1$, а $c=1$ на фронте ударной волны. Обращение c в нуль означает окончание периода индукции и начало реакции с выделением тепла во второй модели и мгновенное полное тепловыделение во фронте пламени в первой. При этом реакция (1) идет без выделения тепла.

Спстему уравнений, описывающих одномерные движения газа, запишем в виде

$$
\begin{gather*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}\right)+\frac{\partial p}{\partial r}=0, \quad \frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial r}+\frac{(v-1) \rho u}{r}=0 \\
\rho\left(\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial r}\right)-\left(\frac{\partial p}{\partial t}+u \frac{\partial p}{\partial r}\right)=0, \quad h=\frac{\gamma}{\gamma-1} \frac{p}{\rho}+\beta Q \tag{3}
\end{gather*}
$$

Здесь h, p, ρ, u - соответственно энтальния, давление, плотность и скорость среды, γ - показатель адиабаты, $v=1,2,3$ соответственно для плос-

ких, цилиндрических п сферических волн, β - доля непрореагировавших молекул во второй модели, Q - полное тепловыделөние в единице массы газа.

Для принятых модөлей условия автомодельности аадачи при различных l_{i}, m_{i}, n_{i} и зависимостях E_{i} и тепловыделения Q от давления и плотности (а также от координат и времени) фактически будут совпадать с рассмотренными ранее в работах [2,4]. При распространении сильной варывной волны в покоящемся газе постоянной плотности в автомодельном случае абсолютная ширина зоны индукции растет пропорцио-
 координат ударной волны и волны горения к координате ударной волны, будет оставаться постоянной. Заметим, что для этого автомодельного движения величины Q п E_{i} пропорциональны давлению. Учет конечной скорости химической реакции приводит к существенному изменению качественной картины течения газа. Примеры рещений без учета зоны индукции приведены в работе ['].

Если величины E_{i} и Q постоянны, то задача о точечном взрыве не будет автомодельной.

Рассмотрим взрыв в однородной покоящейся среде. В моменты времени, близкие к начальному, величина полной энергии, выделившейся при торении в объеме, ограниченном ударной волной, значительно меньше энергии взрыва, т. е.

$$
\begin{equation*}
E_{0}>\sigma_{v} \int_{0}^{r_{s}} Q(1-\beta) \rho r^{v-1} d r, \quad \sigma_{v}=2(v-1) \pi+(v-2)(v-3) \tag{4}
\end{equation*}
$$

и поэтому влияние горения на газодинамическое течение мало (здесь через r_{s} обозначена координата ударной волны).

Для начальной стадии взрыва, когда справедливо неравенство (4), можно искать решение, используя метод линеаризации по малому парамөтру μ пропорциональному отношению $\rho_{\infty} Q r_{s}^{\nu} / E_{0}$. Тогда для любой искомой функции f имеем

$$
\begin{equation*}
f=f_{0}+\mu f_{1}+\ldots \tag{5}
\end{equation*}
$$

После подстановки функций вида (5) в уравнения (1) - (3) для f_{0} п f_{1} получим системы дифференциальных уравнений в частных производных. Одна из них, являясь нелинейной, содержит только главные члены разложения, а другая линейная для величин f_{1}. При этом система для главных членов сама распадается на две. Решением газодинамических уравнений будут автомодельные функции, описывающие течение от сильного точечного взрыва [5] (влияние химических реакций пренебрежимо мало). Химические реакции в этом случае протекают на заданном поле течения и описываются уравнениями (1), (2), в которых каждой функции следует приписать индекс 0 .

Эти уравнения интегрировались для ряда значений параметров энергий активадии E_{1}, E_{2} и различных величин энергии взрыва при значениях постоянных

$$
\begin{gathered}
n_{1}=1, \quad n_{2}=2, \quad l_{1}=l_{2}=l_{3}=0, \quad m_{1}=m_{2}=2, \quad k_{2}=k_{3} \\
E_{3}=E_{2}+Q, \quad E_{2}=2 \cdot 10^{10} \mathrm{~cm}^{2} / \text { cek }^{2}, \quad Q \sim 7 \cdot 10^{10} \mathrm{~cm}^{2} / \mathrm{ceN}^{2}, \quad k_{2}=10^{5} \mathrm{arM}^{-2} \cdot \text { cen }^{-1}
\end{gathered}
$$

Постоянные k_{1} и E_{1} принимались близкими к соответствующим постоянным для времени задержки воспламенения в кислородо-водородных смесях. Результаты расчетов приведены на фиг. 1, 2. На фиг. $1 r^{*}=\left(r_{s}-r_{f}\right) / Q^{-1 / 2 t^{*}}$.

Расчеты показали, что учет конечности скоростей химических реакций приводит к качественно новой картине развития течения, по сравнению с моделью бесконечно-тонкой детонационной волны. Из-за существования у температуры, давления и плотности газа за волной больших отрицательных градиентов в области резкого расширения потока зона воспламенения отделяется от ударного фронта.

Время задержки воспламенения сильно бозрастает, несмотря на то что взрывная волна еще достаточно сильная. Эго приводит к распаду детонационной волны на обычный скачок уплотнения и фронт пламени. Экспериментально такое явление при взрыве было обнаружено в работе [${ }^{6}$]. Явление распада детонационной волны также наблюдалось при дифракции детонационных волн [7] и при гиперзвуковом обтекании затупленных тел горючей смесью газов [${ }^{8,9}$].

Вычисления показали, что для принятой модели прямой и обратной реакции (2). велика роль обратной реакции, которой обычно пренебрегалा при описании движений газа за детонационными волнами. Из-за очень большой температуры смесь сгорает не до конца и тепловая энергия выделяется лишь частично.

Отношение энергии, выделившейся в модели 2 , к той, которая выделилась в модели 1 при полном сгорании, будет для $\tau=10, v=2, E^{(2)} / E^{(1)} \sim$ $\sim 0.5\left(\tau=t / t^{*}, t^{*}=10^{-7} c e k\right)$.

К этому моменту зона воспламенения уже отделилась от взрывной волны, а величина выделившейся при горении во всей возмущенной области энергии ничтожно мала по сравненню с энергией взрыва

$$
\frac{E^{(2)}}{E_{0}} \sim 0.02, \quad E_{0}=10^{10} \text { эpz/cm }
$$

При увеличении энергии взрыва время начала резкого распада волн возрастает, при увеличении же энергии активации убывает, а расщепление волны происходит более ярко выражено. Заметим, что грубую оценку времени индукции можно получить, используя ашпроксимацию автомодельного решения, предложенную в $\left.{ }^{10}\right]$. Действительно, примем, что

$$
\frac{1}{T_{0}}=\frac{1}{T_{*}}+\frac{a}{T_{*}} \ln \frac{t}{t_{*}}, \quad \rho_{0}=\rho_{*}\left(\frac{t_{*}}{t}\right)^{2 b}, \quad p_{0}=p_{*}\left(\frac{t_{*}}{t}\right)^{2 b \psi}
$$

где T_{*}, ρ_{*} - температура и плотность в частице, прошедшей через ударную волну в момент t_{*}, а a и b - постоянные, определяемые из условия аппроксимации газодинамических функций сильного взрыва. Тогда из уравнения (1) для доли индукции c_{0} находим ($n_{1}=1, l_{1} \xlongequal{=}$) :

$$
\begin{gather*}
c_{0}=1-\frac{t_{*}}{\tau_{0}\left(t_{*}\right) A}\left[1-\left(\frac{t_{*}}{t}\right)^{A}\right] \\
A=2 b \gamma+\frac{a E_{1}}{R T_{*}}-1, \quad \tau_{0}\left(t_{*}\right)=\frac{1}{k_{1} p_{*}} \exp \left(\frac{E_{1}}{R T_{*}}\right) \tag{6}
\end{gather*}
$$

Пусть t_{0} - время, когда $c_{0}=0$, тогда, используя для времени индукции τ_{*} соотношение $\tau_{*}=t_{0}-t_{*}$, из (6) находим

$$
\begin{equation*}
\tau_{*}\left(t_{*}\right)=t_{*}\left[1-\tau_{0}\left(t_{*}\right) A / t_{*}\right]^{-1 / A} \tag{7}
\end{equation*}
$$

В сферическом случае для $\gamma=1.3$ в $\left.{ }^{[10}\right]$ было найдено $a=0.44, b=$ $=0.75$.

Проведенные расчеты с указанными выше постоянными показывают, что формула (7) описывает правильно картину явления расщепления детонационной волны, хотя при малых t_{*} дает большие погрешности в определении времени индукции τ *.

Для больших времен, когда уже нельзя будет пользоваться разложением (5), нужно решать задачу численно. Здесь могут произойти либо затухание реакции и, следовательно, механизм горения станет другим, например диффузионным, которое в рамках принятых моделей описать невозможно, либо разрушение одномерности течения за счет неустойчивости и возникновения дополнительных очагов воспламенения, что в конечном счете может привести к восстановлению детонационного горения.

В заключение авторы с благодарностью отмечают, что основные расчеты для данной работы выполнены Е. Бишимовым.

Поступило 16 VI 1969

ЛИТЕРАТУРА

1. Левин В. А. Приближенное решение задачи о сильном точечном взрыве в горючей смесси. Изв. АН СССР, МЖГ, 1967, № 1.
2. KorobeinikovV. P. The problem of point explosion in a detonating gas. Proc. 1-st Internat. Colloquium on Gas Dynamics of Explosions. Brussels, 1967. Astronaut. Acta, 1969, vol. 14, No. 5.
3. Бипимов Е. Численное решение задачи о сильном точечном варыве в детонирующем газе. В сб.: «Дифферендиальные уравнения и их применение», АлмаАта, «Наука», 1968.
4. Бйимов Е., Коробейников В. П., Левин В. А., Черный Г. Г. Одномерные нестационарныє течения горючей смеси тазов с учетом конечной скорости химических реакций. Изв. АН СССР, МЖГ, 1968 , 초 6.
5. Седов Л. И. Методы подобия и размерностей в механике, Изд. 6. М., «Наука», 1967.
6. Lee J. H., Soloukhin R. I., Oppenheim A. K. Current views on gaseous Detonation. Proc. 1-st Internat. Colloquium on Gas Dynamics of Explosions. Brussels, 1967. Astronaut. Acta, 1969, vol. 14, No. 5.
7. Гвоздева Л. Г. Экспериментальное исследование дифракции детонапионных волн в стехиометрической смеси метана с кислородом. ПМТФ, 1961, № 5, стр. 53.
8. A technique for studying supersonic combustion in the vicinity of a hypersonic missile. Tech. News. Bull., 1960, vol. 44, No. 11.
9. Черный Г. Г. Сверхзвуковоө обтекание тел с образованием фронтов детонации и медленного горевия. Astronaut. Acta, 1968, vol. 13, p. 467.
10. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М., Физматгиз, 1963.
