ДВИЖЕНИЕ ФРОНТА СИЛЬНОЙ УДАРНОЙ ВОЛНЫ В ПЛОСКИХ ЗАДАЧАХ С ПОДВИЖНОИ ВНУТРЕННЕИИ ГРАНИЦЕЙ

B. І. АНДРЕЕВ
(Mockea)

Рассматривается задача о плоском одномерном движении ударной волны предельного сжатия с подвижной внутренкей границей, в которой известны начальное положение фронта, его интенсивность, масса охваченного движением газа и энергия, заключенная в этом газе. Задача не является автомодельной и өө точное рещение, связанное с рассмотрением дифферевциальных уравнений в частных производных, вызывает значительные трудности.

Ниже определяется закон двнжения фронта ударной волны в такой задаче по мөтоду [1], позволяющему получить для его нахождения систему обыкновенных дифференциальных уравнений. Метод основан на первоначальном задании степенной связи между безразмерными лагранжевой и эйлеровой перемөнными и замене уравнения энергии әтой связью и интегралом энергии. Решение ищется в первом приближении.

Пусть в момент времени $t=0$ задается некоторый плоский слой газа, характөризующийся начальным размером x_{0}, массой m_{0}, приходящейся на единицу поверхности, и әнергией E_{0}, отделенный от невозмущенного газа постоянной плотности ρ_{0} фронтом ударной волны с начальной скоростью c_{0} и истекающий в вакуум со скоростью u_{0} (фиг. 1).

Предполагается отсутствие разрывов внутри слоя, газ считается невязким и нетеплопроводным, а процесс движения - адиабатическим. Задача решается в лагранжевой (мас-

Фиг. 1 совой) системе координат.

Выбирая в качестве постоянных с независимыми размерностями длины, скорости и плотности величины x_{0}, c_{0} и ρ_{0}, перейдем в рассматриваемой задаче к безразмерным функциям и безразмерным переменным.

Если ввести

$$
\begin{equation*}
R=\frac{x_{2}}{x_{0}}, \quad q=\frac{c}{c_{0}}, \quad \tau=\frac{c_{0}}{x_{0}} t, \quad \mu=\frac{m}{m_{2}} \tag{1}
\end{equation*}
$$

и функции

$$
\begin{equation*}
\lambda=\frac{x}{x_{2}}, \quad f=\frac{u}{u_{2}}, \quad g=\frac{\rho}{\rho_{2}}, \quad h=\frac{p}{p_{2}} \tag{2}
\end{equation*}
$$

то известная система уравнений газовой динамики, описывающая одномерные плоские нестационарные течения газа, примет вид

$$
\begin{align*}
& f=\frac{\gamma+1}{2}\left(\lambda+R \frac{\partial \lambda}{\partial R}-\frac{\mu}{y} \frac{\partial \lambda}{\partial \mu}\right), \quad g=\frac{\gamma-1}{\gamma+1} y\left(\frac{\partial \lambda}{\partial \mu}\right)^{-1} \\
& h=q^{-2} g^{\gamma} \varphi_{0}(\xi), \quad \frac{\partial h}{\partial \mu}=y\left(\frac{\mu}{y} \frac{\partial f}{\partial \mu}-R \frac{\partial f}{\partial R}-f \frac{R}{q} \frac{d q}{d R}\right) \tag{3}\\
& \xi=y R \mu, \quad y=1+\frac{\alpha_{1}-1}{R}, \quad \alpha_{1}=\frac{m_{0}}{\rho_{0} x_{0}}, \quad \varphi_{0}(y R)=q^{2}
\end{align*}
$$

Здесь x - әйлерова координата, m - лагранжева координата, t - время, c - скорость фронта ударной волны, u - массовая скорость, p - давление, γ - показатель адиабаты, α_{1} - безразмерный параметр задачи; индексом 2 обозначены фронтовые значөния соответствующих величин.

Интеграл әнергии в безразмерных функциях имеет вид

$$
\frac{\alpha_{2}}{y R}=\frac{2 q^{2}}{(\gamma+1)^{2}} \int_{0}^{1}\left(f^{2}+\frac{h}{g}\right) d \mu, \quad \alpha_{2}=\frac{E_{0}}{\rho_{0} x_{0} c_{0}^{2}}
$$

Здесь α_{2} - второй безразмерный параметр задачи.
Краевые условия для системы (3):
на фронте волны

$$
\lambda=f=g=h=1 \quad \text { при } \mu=1
$$

на свободной границе газа

$$
\lambda=-\alpha_{3} \frac{\tau}{R}, \quad f=-\frac{\gamma+1}{2} \frac{\alpha_{3}}{q}, \quad g=h=0, \quad \alpha_{3}=\frac{u_{0}}{c_{0}} \quad \text { прп } \mu=0
$$

Здесь α_{3} - третий безразмерный параметр задачи.
Задавая первоначальную степенную связь между безразмерными лагранжевой и әйлеровой переменными [1] и используя интеграл энергии, получаем следующую систему дифференциальных уравнений для определения закона движения фронта ударной волны:

$$
\begin{gather*}
\frac{d \tau}{d R}=\frac{1}{q}, \frac{d q}{d R}=-\frac{q \beta}{y R}(2 \beta+1)^{2}\left[2 \beta+1-\frac{1}{2}(\gamma+1) \alpha_{3} \frac{\beta}{q}-\Phi_{0}\right]^{-1} \times \tag{4}\\
\times\left\{\frac{1 / 4(\gamma+1)^{2} \alpha_{3}^{2} \beta+q^{2}}{q^{2} \beta}+\frac{(\gamma+1) \alpha_{3}\left[\Phi_{0} q-\left(q+1 / 2(\gamma+1) \alpha_{3}\right)(\beta+1)\right]}{q^{2}(\beta+1)^{2}}+\right. \\
+\frac{1 / 2(\gamma+1) \alpha_{3} \beta\left[q+1 / 2(\gamma+1) \alpha_{3}\right]-\Phi_{0} q^{2}}{q^{2} \beta(2 \beta+1)}-\frac{1}{q \beta(2 \beta+1)^{2}} \times \\
\quad \times\left[(\gamma+1) \alpha_{3} \beta \Phi_{0}+1 / 2(\gamma-1) q y\left(12 R \frac{d y}{d R}+R^{2} \frac{d^{2} y}{d R^{2}}\right)\right]+ \\
\left.\quad+\frac{2(\gamma+1)}{\gamma-1} \frac{\Phi_{0}^{2}}{(2 \beta+1)^{3}}-\frac{(\gamma+1)^{2}}{2} \frac{\alpha_{2}}{y R q^{2}}\right\}
\end{gather*}
$$

Здесь

$$
\beta=\frac{\gamma-1}{\gamma+1} y\left(1+\alpha_{3} \frac{\tau}{R}\right)^{-1}, \quad \Phi_{0}=\frac{\gamma-1}{2} R \frac{d y}{d R}-\frac{\gamma+1}{2} \alpha_{3} \beta\left(\frac{1}{q}-\frac{\tau}{R}\right)
$$

Начальными условиями для системы (4) являются

$$
\tau=0, \quad q=1 \quad \text { при } R=1
$$

Сформулированная задача имеет два предельных решения.
Если $\alpha_{3}=0$, т. е. отсутствует истечение газа в вакуум, то при любых значениях α_{1} и α_{2} решение должно асимптотически приближаться к автомодельному решению задачи о сильном взрыве для случая плоской симметрии [2]. Выход на автомодельный рөжим осуществляется тем быстрее, чем ближе параметры α_{1} и α_{2} к значениям, соответствующим автомодельному решению

$$
\begin{equation*}
\alpha_{1}=1, \quad \alpha_{2}=\frac{5 \gamma-3}{(3 \gamma-1)\left(\gamma^{2}-1\right)}=\frac{9}{8} \alpha \quad\left(\alpha=\frac{2 E_{0}}{E}\right) \tag{5}
\end{equation*}
$$

Здесь α - коэфффициент, введенный в решении Л. И. Сөдова [²].
Дөйствительно, при значениях (5) система (4) интегрируется в квадратурах и определяет автомодельный закон движения фронта ударной волны

$$
q=R^{-1 / 2}
$$

Проведенные вычисления α по α_{2} с помощью (5) при $\gamma=1.2,1.4,2.2,3$ дают соответственно значения $\alpha=2.33,1.16,0.33,0.167$, которые совпадают со значениями, найденными в точном рещении [${ }^{2}$].

Если $\alpha_{3} \neq 0$, то решение рассматриваемой задачи в пределе при $R \rightarrow \infty$ должно переходить в решение задачи о кратковременном ударе [] ${ }^{3}$. В то же время ввиду конечной скорости разлета границы газа в вакуум интеграл әнергии в этой задаче не расходится. Это позволяет в пределе определить

${ }^{B-1} \Delta B$	α_{1}	$\alpha_{2}=0.1$	1.0	10	100	1000
10^{-3}	0.1	0.35	1.14	3.175	7.65	17.0
	1.0	0.445	1.17	3.25	7.70	17.05
	10	0.702	1.37	3.40	7.80	17.2
	20	0.740	1.38	3.47	7.95	17.4
	50	-	-	-	8.22	
10^{-4}	0.1	0.256	0.89	2.93	8.05	19.3
	1.0	0.315	0.91	2.95	8.07	19.3
	10	0.430	1.01	2.98	8.17	19.4
	20	0.485	1.01	3.49	8.25	19.5
	50	-	,	-	8.47	19.7

бөзразмерную постоянную, входящую в выражение для закона движения фронта ударной волны в автомодельном решении, и связать ее с параметрамп $\gamma, \alpha_{1}, \alpha_{2}$ प α_{3}.

При возрастании R в соответствии с [${ }^{3,4}$] зависимость q от R должна стремиться к степенному закону вида

$$
\begin{equation*}
q=B R^{s} \tag{6}
\end{equation*}
$$

вытекающему из закона движения фронта ударной волны в автомодельном решении

$$
R=A \tau^{\beta}
$$

гдө β - показатель автомодельности и A - неопределенная безразмерная постоянная, величина которой зависит от конкретных причин зарождения ударной волны и ее начальной стадии движения. Величины B и δ связаны с A и β соотношениями

$$
\delta=\frac{1-\beta}{\beta}, \quad B=\beta A^{1 / \beta}
$$

Исследуя решение спстемы (4) при различных заданиях безразмерных параметров $\gamma, \alpha_{1}, \alpha_{2}$ и α_{3}, можно получить следующие ревультаты:

1) осуществляя контроль за изменением величины B в законе (6) и задаваясь допустимым пределом еө измөнения, определить верхнюю границу применимости автомодельного закона движения фронта;
2) по предельной величине B определить постоянную A в автомодельном решении, т. е. получить завксимость A от безразмерных параметров задачп;
3) найти закон движения фронта в начальной неавтомодельной стадии.

В проведенном комплексе расчетов при определении закона движения фронта волны путем численного интегрирования системы (4) фиксировались значения безразмерного радиуса фронта R, на которых относительное изменение величины B на шаге $\Delta R=1$ не превышало 10^{-3} и 10^{-4}.

В таблице приведены значения безразмерной постоянной A в зависимости от α_{1} пи α_{2} при $\alpha_{3}=2 /(\gamma+1)$ для $\gamma=1.4$. Эти значения по существу связывают закон движения фронта в автомодельной стадии с конкретными причинами возникновения ударной волны, которые определяют задание раз-

Фиг. 2

Фиг. 3

мерных величин $r_{0}, E_{0}, m_{0}, \rho_{0}, c_{0}$ и u_{0}. Из таблицы видно, что A слабо зависит от параметра α_{1} и сильно пзменяется при изменении α_{2}. Как показали расчеты, при $\gamma=3$ в диапазоне значений $0.1 \leqslant \alpha_{1} \leqslant 20$ коэффициент A практически оказался не зависящим от параметра α_{1}.

На фиг. 2 приведены зависимости $q(R)$ и $\tau(R)$ для $\alpha_{1}=0.1, \alpha_{2}=50$, $\alpha_{3}=0.833, \gamma=1.4$ в стадии неавтомодельного движения. Пунктиром показан автомодельный закон движения фронта ударной волны. Как видно, при больших значениях параметра α_{2} скорость фронта ударной волны первоначально возрастает за счет интенсивного перехода потенциальной энергии возмущенного газа в кинетическую энергию его разлета.

Abstract

В качестве конкретного примера рассмотрим движение сильной ударной волны, вывванное кратковременным действием порщня, движущегося с постоянной скоростью u_{1} в течение времени t_{1}. Предполагается, что после момента t_{1} поршень убирается и сжатый газ расширяется в вакуум [5].

Поршень образует в газе ударную волну, фронт которой до момента t_{0} распрострапяется с постоянной скоростью

$$
\begin{equation*}
c_{0}=1 / 2(\gamma+1) u_{1} \tag{7}
\end{equation*}
$$

Время t_{0} определяет момент догона фровта ударной волны волной разрежения, идущей от свободной граниды газа.

Этот момент времени удобнее всего принять за начальный, так как начиная с него в движущемся газө отсутствуют слабые разрывы. Принимая за начало координат положөние разлетающейся в вакуум границы в момент t_{0}, получаем для размерных параметров задачи следующие выражения:

$$
\begin{gather*}
E_{0}=1 / 2(\gamma+1) \rho_{0} u_{1} s_{1} t_{1}, \quad m_{0}=1 / 2(\gamma-1) k(1+k) \rho_{0} u_{1} t_{1} \tag{8}\\
u_{0}=(k-1) u_{1}, \quad x_{0}=1 / 2(\gamma-1) k(1+k) u_{1} t_{1}, \quad k=[2 \gamma /(\gamma-1)]^{1 / 2}
\end{gather*}
$$

Начало координат, от которого в дальнейшем будет отсчитываться радиус фронта ударной волны, оказывается для рассматриваемой задачи совпадаюмщим с первоначальным положением поршня, а время, прошедшее от вачала движения поршня, будет отсчитываться от момента

$$
t_{0}=\frac{\gamma-1}{\gamma+1} k(1+k) t_{1}
$$

Формулы (7), (8) опрөделяют все размерные величины через γ, u_{1}, t_{1} и плотность невозмущенного газа ρ_{0}. В соответствии с ними безразмерные параметры задачи слөдует принять равными

$$
\begin{equation*}
\alpha_{1}=1_{1} \quad \alpha_{2}=\frac{2(\gamma-1)}{\gamma(\gamma+1)^{2}} k(k-1), \quad \alpha_{3}=\frac{2}{\gamma+1}(k-1) \tag{9}
\end{equation*}
$$

Заметим, что они оказываются зависящими только от показателя адиабаты γ.
Аналогичным образом могут быть определены размерные парамөтры в других конкретных задачах, например когда поршень в рассмотренной выше задаче спустя время t_{1} после движения не убирается, а останавливается, или когда движение ударной волны вызвано мгновенным взрывом слоя газа на границе с вакуумом.

Закон движения фронта ударной волны в рассмотренном примере, полученный интегрированием систөмы (4) при значениях безразмерных параметров задачи, которые определяются формулами (9) для $\gamma=1.4$, представлен на фиг. 3. Там же приведены вначения $B^{-1} \cdot \Delta B$ на пагө $\Delta R=1$ п A в зависимости от безразмерного радиуса \boldsymbol{R}. К сожалению, сопоставить закон движения фронта с законом в точном решении ['] не представилось возможным, так как последний не был приведен в публикации.

В заключение автор выражает признательность М. А. Шабановой за проведениө расчетов и Ю. П. Райзеру за просмотр рукописи.

Поступило 27 XI 1967

ЛИТЕРАТУРА

1. Андр.еев В. П. Метод последовательных приближений для одномерных нестационарных задач газовой динамики. Изв. АН СССР, МЖГ, 1967, № 6.
2. Сөдов Ј. И. Движение воздуха при сильном взрыве. Докл. АН СССР, 1946, т. 52, NE 1.
3. Зельдович Я. Б. Движение газа под действием кратковременного давления (удара). Акуст. ж.. 1956, т. 2, вып. 1.
4. Зөльдович Я. В., Райзөр Ю. П. Физика ударных волн и высокотөмпературных гидродинамических явлений. М., Физматгиз, 1963.
5. Ж у к ов А. И., К а ж д а н Я. М., О движении газа под действием кратковременного импульса. Акуст. ж., 1956, т. 2, вып. 4.
