ДВИЖЕНИЕ ФРОНТА СИЛЬНОЙ УДАРНОЙ ВОЛНЫ В ПЛОСКИХ ЗАДАЧАХ С ПОДВИЖНОЙ ВНУТРЕННЕЙ ГРАНИЦЕЙ

в. п. андреев

(Москва)

Рассматривается задача о плоском одномерном движении ударной волны предельного сжатия с подвижной внутренней границей, в которой известны начальное положение фронта, его интенсивность, масса охваченного движением газа и энергия, заключенная в этом газе. Задача не является автомодельной и ее точное решение, связанное с рассмотрением дифференциальных уравнений в частных производных, вызывает значительные трудности.

Ниже определяется закон движения фронта ударной волны в такой задаче по методу [1], позволяющему получить для его нахождения систему обыкновенных дифференциальных уравнений. Метод основан на первоначальном задании степенной связи между безразмерными лагранжевой и эйлеровой переменными и замене уравнения энергии этой связью и интегралом энергии. Решение ищется в первом приближении.

Пусть в момент времени t = 0 задается некоторый плоский слой газа, характеризующийся начальным размером x_0 , массой m_0 , приходящейся на единицу поверхности, и энергией E_0 , отделенный от невозмущенного газа

постоянной плотности ρ_0 фронтом ударной волны с начальной скоростью c_0 и истекающий в вакуум со скоростью u_0 (фиг. 1).

Предполагается отсутствие разрывов внутри слоя, газ считается невязким и нетеплопроводным, а процесс движения — адиабатическим. Задача решается в лагранжевой (массовой) системе координат.

Выбирая в качестве постоянных с незави-

симыми размерностями длины, скорости и плотности величины x₀, c₀ и ρ₀, перейдем в рассматриваемой задаче к безразмерным функциям и безразмерным переменным.

Если ввести

$$R = \frac{x_2}{x_0}, \quad q = \frac{c}{c_0}, \quad \tau = \frac{c_0}{x_0}t, \quad \mu = \frac{m}{m_2}$$
 (1)

и функции

$$\lambda = \frac{x}{x_2}, \quad f = \frac{u}{u_2}, \quad g = \frac{\rho}{\rho_2}, \quad h = \frac{p}{p_2} \tag{2}$$

то известная система уравнений газовой динамики, описывающая од**вомер**ные плоские нестационарные течения газа, примет вид

$$f = \frac{\gamma + 1}{2} \left(\lambda + R \frac{\partial \lambda}{\partial R} - \frac{\mu}{y} \frac{\partial \lambda}{\partial \mu} \right), \quad g = \frac{\gamma - 1}{\gamma + 1} y \left(\frac{\partial \lambda}{\partial \mu} \right)^{-1}$$

$$h = q^{-2} g^{\gamma} \varphi_{0}(\xi), \quad \frac{\partial h}{\partial \mu} = y \left(\frac{\mu}{y} \frac{\partial f}{\partial \mu} - R \frac{\partial f}{\partial R} - f \frac{R}{q} \frac{dq}{dR} \right)$$

$$\xi = y R \mu, \quad y = 1 + \frac{\alpha_{1} - 1}{R}, \quad \alpha_{1} = \frac{m_{0}}{\rho_{0} x_{0}}, \quad \varphi_{0}(yR) = q^{2}$$
(3)

Здесь x — эйлерова координата, m — лагранжева координата, t — время, с — скорость фронта ударной волны, и — массовая скорость, р — давление, γ — показатель адиабаты, α₁ — безразмерный параметр задачи; индексом 2 обозначены фронтовые значения соответствующих величин.

Интеграл энергии в безразмерных функциях имеет вид

$$\frac{\alpha_2}{yR} = \frac{2q^2}{(\gamma+1)^2} \int_0^1 \left(f^2 + \frac{h}{g}\right) d\mu, \quad \alpha_2 = \frac{E_0}{\rho_0 x_0 c_0^2}$$

Здесь a_2 — второй безразмерный параметр задачи. Краевые условия для системы (3): на фронте волны

$$\lambda = f = g = h = 1$$
 при $\mu = 1$

на свободной границе газа

$$\lambda = -a_3 \frac{\tau}{R}, \quad f = -\frac{\gamma + 1}{2} \frac{a_3}{q}, \quad g = h = 0, \quad a_3 = \frac{u_0}{c_0} \quad \text{при } \mu = 0$$

Здесь аз — третий безразмерный параметр задачи.

Задавая первоначальную степенную связь между безразмерными лагранжевой и эйлеровой переменными [1] и используя интеграл энергии, получаем следующую систему дифференциальных уравнений для определения закона движения фронта ударной волны:

$$\begin{aligned} \frac{d\tau}{dR} &= \frac{1}{q}, \ \frac{dq}{dR} = -\frac{q\beta}{yR} (2\beta+1)^2 \Big[2\beta+1 - \frac{1}{2} (\gamma+1) \alpha_3 \frac{\beta}{q} - \Phi_0 \Big]^{-1} \times \end{aligned} (4) \\ &\times \Big\{ \frac{\frac{1}{4} (\gamma+1)^2 \alpha_3^2 \beta + q^2}{q^2 \beta} + \frac{(\gamma+1) \alpha_3 [\Phi_0 q - (q+\frac{1}{2} (\gamma+1) \alpha_3) (\beta+1)]}{q^2 (\beta+1)^2} + \frac{\frac{1}{2} (\gamma+1) \alpha_3 \beta [q+\frac{1}{2} (\gamma+1) \alpha_3] - \Phi_0 q^2}{q^2 \beta (2\beta+1)} - \frac{1}{q\beta (2\beta+1)^2} \times \\ &\times \Big[(\gamma+1) \alpha_3 \beta \Phi_0 + \frac{1}{2} (\gamma-1) qy \Big(\frac{1}{2R} \frac{dy}{dR} + R^2 \frac{d^2y}{dR^2} \Big) \Big] + \\ &+ \frac{2(\gamma+1)}{\gamma-1} \frac{\Phi_0^2}{(2\beta+1)^3} - \frac{(\gamma+1)^2}{2} \frac{\alpha_2}{yRq^2} \Big\} \end{aligned}$$

$$\beta = \frac{\gamma - 1}{\gamma + 1} y \left(1 + \alpha_3 \frac{\tau}{R} \right)^{-1}, \quad \Phi_0 = \frac{\gamma - 1}{2} R \frac{dy}{dR} - \frac{\gamma + 1}{2} \alpha_3 \beta \left(\frac{1}{q} - \frac{\tau}{R} \right)$$

Начальными условиями для системы (4) являются

 $\tau = 0$, q = 1при R = 1

Сформулированная задача имеет два предельных решения.

Если α₃ = 0, т. е. отсутствует истечение газа в вакуум, то при любых значениях а1 и а2 решение должно асимптотически приближаться к автомодельному решению задачи о сильном взрыве для случая плоской симметрии [2]. Выход на автомодельный режим осуществляется тем быстрее, чем ближе параметры a1 и a2 к значениям, соответствующим автомодельному решению

$$\alpha_1 = 1, \quad \alpha_2 = \frac{5\gamma - 3}{(3\gamma - 1)(\gamma^2 - 1)} = \frac{9}{8} \alpha \quad \left(\alpha = \frac{2E_0}{E}\right) \quad (5)$$

Здесь а — коэффициент, введенный в решении Л. И. Седова [²]. Действительно, при значениях (5) система (4) интегрируется в квадратурах и определяет автомодельный закон движения фронта ударной волны

$$a = R^{-\frac{1}{2}}$$

Проведенные вычисления а по a_2 с помощью (5) при $\gamma = 1.2$, 1.4, 2.2, 3 дают соответственно значения $\alpha = 2.33$, 1.16, 0.33, 0.167, которые совпадают со значениями, найденными в точном решении [²].

Если $\alpha_3 \neq 0$, то решение рассматриваемой задачи в пределе при $R \to \infty$ должно переходить в решение задачи о кратковременном ударе [³]. В то же время ввиду конечной скорости разлета границы газа в вакуум интеграл энергии в этой задаче не расходится. Это позволяет в пределе определить

B − ¹∆B	αι	$\alpha_2 = 0.1$	1.0	10	100	1000
10 ⁻³	$\begin{array}{c} 0.1 \\ 1.0 \\ 10 \\ 20 \\ 50 \end{array}$	$\begin{array}{c} 0.35 \\ 0.445 \\ 0.702 \\ 0.740 \\ \end{array}$	1.14 1.17 1.37 1.38	3.175 3.25 3.40 3.47 	7.65 7.70 7.80 7.95 8.22	17.0 17.05 17.2 17.4 17.6
10 ⁻⁴	0.1 1.0 10 20 50	$\begin{array}{c} 0.256 \\ 0.315 \\ 0.430 \\ 0.485 \end{array}$	0.89 0.91 1.01 1.01 	2.93 2.95 2.98 3.49	8.05 8.07 8.17 8.25 8.47	19.3 19.3 19.4 19.5 19.7

безразмерную постоянную, входящую в выражение для закона движения фронта ударной волны в автомодельном решении, и связать ее с параметрами у, α_1 , α_2 и α_3 .

При возрастании R в соответствии с [^{3, 4}] зависимость q от R должна стремиться к степенному закону вида

$$q = BR^{\delta} \tag{6}$$

вытекающему из закона движения фронта ударной волны в автомодельном решении

$$R = A \tau^{\beta}$$

где β — показатель автомодельности и A — неопределенная безразмерная постоянная, величина которой зависит от конкретных причин зарождения ударной волны и ее начальной стадии движения. Величины B и δ связаны с A и β соотношениями

$$\delta = \frac{1-\beta}{\beta}, \quad B = \beta A^{1/\beta}$$

Исследуя решение системы (4) при различных заданиях безразмерных параметров у, α_1 , α_2 и α_3 , можно получить следующие результаты:

1) осуществляя контроль за изменением величины B в законе (6) и задаваясь допустимым пределом ее изменения, определить верхнюю границу применимости автомодельного закона движения фронта;

2) по предельной величине B определить постоянную A в автомодельном решении, т. е. получить зависимость A от безразмерных параметров задачи;

3) найти закон движения фронта в начальной неавтомодельной стадии.

В проведенном комплексе расчетов при определении закона движения фронта волны путем численного интегрирования системы (4) фиксировались значения безразмерного радиуса фронта R, на которых относительное изменение величины B на шаге $\Delta R = 1$ не превышало 10^{-3} и 10^{-4} .

В таблице приведены значения безразмерной постоянной A в зависимости от α_1 и α_2 при $\alpha_3 = 2/(\gamma + 1)$ для $\gamma = 1.4$. Эти значения по существу связывают закон движения

фронта в автомодельной стадии с конкретными причинами возникновения ударной волны, которые определяют задание раз-

мерных величин r_0 , E_0 , m_0 , ρ_0 , c_0 и u_0 . Из таблицы видно, что A слабо зависит от параметра α_1 и сильно изменяется при изменении α_2 . Как показали расчеты, при $\gamma = 3$ в диапазоне значений $0.1 \leq \alpha_1 \leq 20$ коэффициент Aпрактически оказался не зависящим от параметра α_1 .

На фиг. 2 приведены зависимости q(R) и $\tau(R)$ для $\alpha_1 = 0.1$, $\alpha_2 = 50$, $\alpha_3 = 0.833$, $\gamma = 1.4$ в стадии неавтомодельного движения. Пунктиром показан автомодельный закон движения фронта ударной волны. Как видно, при больших значениях параметра α_2 скорость фронта ударной волны первоначально возрастает за счет интенсивного перехода потенциальной энергии возмущенного газа в кинетическую энергию его разлета.

В качестве конкретного примера рассмотрим движение сильной ударной волны, вызванное кратковременным действием поршня, движущегося с постоянной скоростью u_4 в течение времени t_4 . Предполагается, что после момента t_4 поршень убирается и сжатый газ расширяется в вакуум [⁵].

Поршень образует в газе ударную волну, фронт которой до момента t₀ распространяется с постоянной скоростью

$$c_0 = \frac{1}{2}(\gamma + 1)u_1 \tag{7}$$

Время t₀ определяет момент догона фронта ударной волны волной разрежения, идущей от свободной границы газа.

Этот момент времени удобнее всего принять за начальный, так как начиная с него в движущемся газе отсутствуют слабые разрывы. Принимая за начало координат положение разлетающейся в вакуум границы в момент t₀, получаем для размерных параметров задачи следующие выражения:

$$E_0 = \frac{1}{2}(\gamma + 1)\rho_0 u_1^{s} t_1, \qquad m_0 = \frac{1}{2}(\gamma - 1)k(1+k)\rho_0 u_1 t_1$$
(8)

$$u_0 = (k-1)u_1, \qquad x_0 = \frac{1}{2}(\gamma-1)k(1+k)u_1t_1, \qquad k = \frac{1}{2}(\gamma-1)\frac{1}{2}$$

Начало координат, от которого в дальнейшем будет отсчитываться радиус фронта ударной волны, оказывается для рассматриваемой задачи совпадающим с первоначальным положением поршия, а время, прошедшее от начала движения поршия, будет отсчитываться от момента

$$t_0 = \frac{\gamma - 1}{\gamma + 1} k (1 + k) t_1$$

Формулы (7), (8) определяют все размерные величины через у, u₁, t₁ и плотность невозмущенного газа ро. В соответствии с ними безразмерные параметры задачи следует принять равными

$$\alpha_{1} = 1, \quad \alpha_{2} = \frac{2(\gamma - 1)}{\gamma(\gamma + 1)^{2}} k(k - 1), \quad \alpha_{3} = \frac{2}{\gamma + 1}(k - 1)$$
(9)

Заметим, что они оказываются зависящими только от показателя адиабаты у. Аналогичным образом могут быть определены размерные параметры в других конкретных задачах, например когда поршень в рассмотренной выше задаче спустя время t. после движения не убирается, а останавливается, или когда движение ударной волны вызвано мгновенным взрывом слоя газа на границе с вакуумом.

Закон движения фронта ударной волны в рассмотренном примере, полученный интегрированием системы (4) при значениях безразмерных параметров задачи, кото-рые определяются формулами (9) для $\gamma = 1.4$, представлен на фиг. 3. Там же приве-дены значения $B^{-1} \cdot \Delta B$ на шаге $\Delta R = 1$ и A в зависимости от безразмерного радиуса R. К сожалению, сопоставить закон движения фронта с законом в точном решении [5] не представилось возможным, так как последний не был приведен в публикации. В заключение автор выражает признательность М. А. Шабановой за проведение расчетов и Ю. П. Райзеру за просмотр рукописи.

Поступило 27 XI 1967

ЛИТЕРАТУРА

- 1. Андреев В. П. Метод последовательных приближений для одномерных нестационарных задач газовой динамики. Изв. АН СССР, МЖГ, 1967, № 6.
- Седов Л. И. Движение воздуха при сильном взрыве. Докл. АН СССР, 1946, т. 52, 2 Nº 1.
- 3. Зельдович Я. Б. Движение газа под действием кратковременного давления (удара). Акуст. ж., 1956, т. 2, вып. 1.
- Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемператур-ных гидродинамических явлений. М., Физматгиз, 1963.
 Жуков А. И., Каждан Я. М., О движении газа под действием кратковременного
- импульса. Акуст. ж., 1956, т. 2, вып. 4.