РЕЛАКСАЦИОННЫЕ КОЛЕБАНИЯ В ТУРБУЛЕНТНОМ БЛИЖНЕМ СЛЕДЕ

Л. в. гогиІІІ

(Москва)
Рассмотрено по методу раӧоты [${ }^{2}$] взаимодействие скачка или волны разрежения во внешнем плоском сверхзвуковом потоке с турбулентным ближним следом. Показано, что течение в возмущенном ближнем следе может быть двузначным, причем при фиксированных условиях во внешнем потоке возможны квазистационарные течения перехода между этими двумя стационарными состояниями. Под воздействием некоторого внешнего механизма возбуждения (предположительно турбулентных пульсаций типа больших вихрей) эти квазистационарные течения превращаются в релаксационные колебания, приводящие к известным из экспериментов колебаниям донного давления.

Теоретические выводы подтверждаются экспериментальным исследованием пульсаций донного давления, возникающих в плоском тарельчатом сопле при взаимодействии скачка нерасчетности с ближним следом.

Интегральные методы теории пограничного слоя нозволяют приближенно рассчитать плоский турбулентный след за кромкой, расположенной в равномерном сверхзвуковом потоке [1,2]. Называя такой след невозму-

щенным, отметим, что для внутренних задач практически более важен расчет ближних следов, возмущенных скачками и волнами разрежения, существующими во внешнем потоке. Для примера на фиг. 1 изображена картина течения в турбулентном ближнем следе при $M_{\infty}=3,0$ в случае отсутствия возмущений (a) и в случае взаимодействия следа со скачком уплотнения интенсивностью $\delta_{s} \approx 5^{\circ}$, который падает на след на расстоянии $x_{s}=6,0$ от торца. Из опыта известно, что наличие таких возмущений

в определенных случаях приводит к появлению интенсивных низкочастотных колебаний следа.

1. В соответствии с работой [2] для описания взаимодействия турбулентного следа с внешним сверхзвуковым потоком ниже применяется самая простая система уравнений, которая состоит из
уравнения неразрывности в форме Крокко - Лиза

$$
\begin{equation*}
\frac{d}{d x} \int_{0}^{\delta} \rho u d y=\rho_{\delta} u_{\delta}\left(\frac{d \delta}{d x}-\operatorname{tg} \theta\right) \tag{1.1}
\end{equation*}
$$

уравнения импульсов

$$
\begin{equation*}
\frac{d \ln \delta^{* *}}{d x}+\left(2+H-M^{2}\right) \frac{d \ln C}{d x}=0 \tag{1.2}
\end{equation*}
$$

уравнения движения вдоль оси симметрии следа

$$
\begin{equation*}
\rho_{0} u_{0} \frac{d u_{0}}{d x}+\frac{d p}{d x}=\left(\frac{\partial \tau}{\partial y}\right)_{0} \tag{1.3}
\end{equation*}
$$

Здесь θ - угол наклона линии тока внешнего изэнтрошического потока на границе следа $\delta(x)$. Внешнее течение представляет собой простую волну, так что

$$
\theta=v\left(C_{\infty}\right)-v(C), \quad C=\frac{u}{u_{\max }}=M\left(\frac{2}{\gamma-1}+M^{2}\right)^{1 / 2}
$$

Здесь C - приведенная скорость, $v(c)$ - функция Прандтля - Майера. Индексами δ и 0 обозначены параметры на границе и на оси симметрии следа.

Турбулентное касательное напряжение выражается по формуле Прандтля

$$
\tau=\rho v_{t} \frac{\partial u}{\partial y}, \quad v_{t}=x\left(u_{\delta}-u_{0}\right) \delta
$$

Профиль скорости в следе принимается однопараметрическим

$$
\frac{u}{u_{\delta}}=1-m f(\eta), \quad m=\frac{u_{\delta}-u_{0}}{u_{\delta}}, \quad f(\eta)=\frac{u_{\delta}-u}{u_{\delta}-u_{0}}=1-3 \eta^{2}+\dot{2} \eta^{3}
$$

Система уравнений (1.1), (1.2) и (1.3) разрешается относительно производных от неизвестных функций: $\delta(x)$ - толщины следа, $m(x)$ - формпараметра профиля и $C(x)$ - приведенной скорости внешнего потока - и записывается в виде

$$
\begin{equation*}
\frac{d \ln \delta}{d x}=\frac{\Delta_{1}}{\Delta}, \quad \frac{d m}{d x}=\frac{\Delta_{2}}{\Delta}, \quad \frac{d \ln C}{d x}=\frac{\Delta_{3}}{\Delta} \tag{1.4}
\end{equation*}
$$

Здесь

$$
\begin{gathered}
\Delta=-\frac{\delta(1-m)}{(-a x) m^{2}}\left[\Delta_{2}+\frac{m(2-m)}{(1-m)\left(1-C^{2}\right)} \Delta_{3}\right] \\
\Delta_{1}=-\left[\frac{\partial \ln H^{* *}}{\partial m} \Delta_{2}+\left(\frac{\partial \ln H^{* *}}{\partial \ln C}+2+H-M^{2}\right) \Delta_{3}\right] \\
\Delta_{2}=\frac{\operatorname{tg} \theta m(2-m)}{(-a x) m^{2} H^{*}\left(1-C^{2}\right)}+\frac{\partial \ln H}{\partial \ln C}-\frac{1-M^{2}}{H^{*}}-H-1 \\
\Delta_{3}=-\left[\frac{\operatorname{tg} \theta(1-m)}{(-a x) m^{2} H^{*}}+\frac{\partial \ln H}{\partial m}\right], \quad\left(H=\frac{\delta^{*}}{\delta^{* *}}, H^{*}=\frac{\delta^{*}}{\delta}, H^{* *}=\frac{\delta^{* *}}{\delta}\right)
\end{gathered}
$$

Здесь $(-a x)=0.012$ - постоянная турбулентности для ближнего следа.

При заданных параметрах C_{∞} и (-ax) система (1.4) обладает особым решением, проходящим через седловую точку, в которой $\Delta_{i}=0$ ($i=0,1$, 2,3). Как было покавано в работе [${ }^{2}$], эта особая точка соответствует горловине следа, а само особое репцние соответствует течению в невозмущенном ближнем следе.

Система (1.4) сводится к одному дифференциальному уравнению относительно $m=m(C)$

$$
\begin{equation*}
\frac{d m}{d \ln C}=\frac{\Delta_{2}}{\Delta_{3}} \tag{1.5}
\end{equation*}
$$

и двум первым интегралам. Интегральные кривые уравнения (1.5) описывают в плоскости параметров (m, C) течения взаимодействия турбулентного следа со сверхзвуковым нотоком с учетом его волновой структуры.

Начальные условия для системы (1.4) ($\delta^{\circ}, m^{\circ}, C^{\circ}$ и x°) определяются при склеивании течения взаимодействия в следе с изобарическим течением смешения в донной области из условий сохранения абсолютных толщин δ и δ^{*} в сечении склеивания и массы газа в донной области [${ }^{3}$]. Начальное значениэ формпараметра $m^{\circ}>1$, длина изобарической донной области x° и начальная толщина ближнего следа δ° определяются в зависимости от донного давления и вдува, C° и t, уравнениями (для простоты выкладок принимается, что начальный пограничный слой отсутствует, $\delta_{\infty}=0$)

$$
\begin{gather*}
\frac{1-H^{*}\left(m, C^{\circ}\right)}{G\left(m, C^{\circ}\right)}=\frac{1-H^{*}\left(1, C^{\circ}\right)}{H^{* *}\left(1, C^{\circ}\right)} t, \quad t=\frac{1}{1-B} \tag{1.6}\\
x^{\circ}=\left\{\frac{b^{\circ}}{\cos \theta^{\circ}} H^{* *}\left(1, C^{\circ}\right) \frac{H^{*}\left(m^{\circ}, C^{\circ}\right)}{G\left(m^{\circ}, C^{\circ}\right)}(1-B)+\operatorname{tg} \theta^{\circ}\right\} \tag{1.7}\\
\delta^{\circ}=\left[H^{*}\left(m^{\circ}, C^{\circ}\right)\right]^{-1}\left(1-x^{\circ} \operatorname{tg} \theta^{\circ}\right) \tag{1.8}\\
B=\frac{(\rho u)_{+}}{(\rho u)^{\circ}}\left[\frac{b^{\circ}}{\cos \theta^{\circ}} H^{* *}\left(1, C^{\circ}\right) x^{\circ}\right]^{-1}, \quad G(m, C)=-\int_{\circ}^{\eta_{*}} \frac{\rho u}{\rho_{\delta} u_{\delta}} d \eta \\
f(\eta *)=m^{-1}
\end{gather*}
$$

Здесь $G(m, C)$ - относительный расход возвратного течения в следе; B, t - параметры вдува; $b(C)$ - коэффициент утолщения изобарической струи.

Величина донного давления, или C°, определяется из условия использования особого решения уравнения (1.5) или системы (1.4).
2. На фиг. $2, a$ в плоскости $m C$ представлено семейство интегральных кривых уравнения (1.5), построенное для $M_{\infty}=3.0$. Изображенные пунктиром неособые кривые располагаются около сплошной особой кривой для $M_{\infty}=3$, проходящей через седловую точку O (горловину невозмущенного следа). Как было отмечено в работе [²], семейство неособых интегральных кривых уравнений (1.4) или (1.5) соответствует различным течениям в возмущенном ближнем следе при конечных расстояниях от начала следа. Физически возможные течения изображаются отрезками неособых интегральных кривых, которые могут рассматриваться либо непосредственно, либо сращиваются с отрезками других особых кривых. Тонкими сплошными линиями нанесены линии равных расстояний от торца, $x=$ const, котпрые были получены путем интегрирования системы (1.4).

Течение в возмущенном ближнем следе определяется, помимо параметров невозмущенного нотока перед кромкой, интенсивностью возмущения δ_{s} и расположением его относительно кромки x_{s}. На фиг. 2 , б приводятся схематически различные течения в ближнем следе, возмущенном скачком (схемы $1,2,3$) или волной разрежения (схемы $4,5,6$). Течения $1,2,4,5$ в илоскости $m C$ изобраякаются отрезками неособых интегральных кривых, склеенных с соответствующими особыми кривыми. Схемы 3 и 6 , относящиеся к течению в сопле с уступом или эжекторном сопле, изображаются в плоскости $m C$ конечным отрезком неособой интегральной кривой.

В результатө анализа системы (1.4) и систематических численных расчетов были установлены два важных обстоятельства.

1. В области правых ветвей неособых кривых (фиг. 2) располагается линия возврата, за которую течение не может быть продолжено. Уравне-

ние этой линии определяется условием обрацения в нуль знаменатєля в правых частях уравнений (1.4)

$$
\begin{align*}
\Delta(m, C) & =0, \quad \text { или } \frac{\partial \ln H}{\partial \ln C}-\frac{1-M^{2}}{H^{*}}-1-H- \\
& -\frac{m(2-m)}{\left(1-C^{2}\right)(1-m)} \frac{\partial \ln H}{\partial m}=0 \tag{2.1}
\end{align*}
$$

и соответствует местным условиям в горловине следа, одинаковым для всзмущенного и невозмущенного следов. Через линию $\Delta=0$ могут проходить только особые интегральные кривые. (Отметим, что такая же линия возврата существует и для течений с сильным отсосом из донной области.)
2. В области левых ветвей неособых кривых с увеличением расстояния x_{s} до места расположения возмущения в следе кривизна линий $x_{s}=\mathrm{const}$ возрастает (фиг. 2). Поэтому другие особые кривые, состветствующие числам $M_{\infty}<\hat{M}_{\infty 0}$, а также вертикали $C=$ const, начинают пересекать эти линии дважды. Это соответствует двузначности течения в возмущенном ближнем следе и гистерезису в физических течениях такого рода. Вслед-

ствие этого состояние ближнего следа при заданных граничных условиях: числе M_{∞} перед кромкой, интенсивности скачка δ_{s} и месте его расположения в следе x_{s} - зависит от пути, по которому это состояние будет достигнуто. Сказанное иллюстрируется изображением на фиг. 1 двух возможных течений в возмущенном скачком ближнем следе при $M_{\infty}=3.0, \delta_{s} \approx 5^{\circ}$ и $x=6$, которые были получены интегрированием системы (1.4) и последующим расчетом функции тока $\psi(\eta)$. Эти течения соответствуют отрезкам неособых интегральных кривых $A_{1} K_{1} K_{1}^{\prime} S_{1}$ и $A_{2} S_{2}$, склеенным с особой интегральной кривой для $M_{\infty} \approx 2.5$.

На фиг. 3 приводится зависимость величины донного давления от интенсивности возмущения δ_{s} и места его расположения в следе l_{s}, построенная по фиг. 2. Из рассмотрения фиг. 3 видно, что наличие в потоке скачка, паадающего на ближний след, оказывает существенное влияние на величину донного давления, что, в частности, может служить причиной погрешности эксперимента. Влияние скачка конечной интенсивности сказывается даже при расположении его за горловиной следа ($l_{s}>l_{*}$), поскольку эта горловина представляет собой сечение запирания только относительно малых возмущений; при достаточно большом удалении влияние скачка уплотнения отсутствует. Начиная с некоторого значения интенсивности скачка $\delta_{s}>\delta_{*}$ (в рас-

Фиг. 3 сматриваемом случае $\delta_{*}=5^{\circ}$), возникает двузначность донного давления, соответствующая двум возможным течениям в ближнем следе, которые можно назвать сильно- или слабовозмущенными.

На фиг. 4 приводится зависимость относительного донного давления p° / p^{\prime} в сопле с уступом от располагаемого отношения давлений p_{∞} / p^{\prime} для различных длин обечаек x_{s} (при $x_{s}=2-4$). Приведенные кривые качественно аналогичны известным экспериментальным зависимостям для эжекторных сопел и характеризуются наличием режимов течекия с замкнутой и разомкнутой донной областью и гистерезисом характеристик в области перехода между этими режимами. Располагаэмое отношение давлений, при котором происходит замыкание, и соответствующая величина донного давления существенно зависят от длины x_{s} (фиг. 4).
3. Как уже отмечалось, возмущенный скачком ближний след при отсутствни вдува (или отсоса) в донную область может находиться в какомлибо из двух возможных стационарных состояний, характеризуемых значениями донного давления $p_{1}{ }^{\circ}$ й $p_{3}{ }^{\circ}\left(p_{1}{ }^{\circ}<p_{3}{ }^{\circ}\right)$. При наличии вдува в донную область течение в возмущенном ближнем следе, как показывают результаты систематических расчетов, оказывается двузначным во всем дианазоие значений донного давления.

На фиг. 5 в плоскости $m C$ изображены возможные состояния в начальном сечении ближнего следа, удовлетворяющие заданным граничным условиям: $M_{\infty}=3.0, \delta_{s} \approx 5^{\circ}, x_{s}=6.0$. Пунктиром изображены неособые кривые, которые исходят из начальных точек 1 и 3 (вдув отсутствует, $t=1$). Верхняя кривая начальных условий, где расположена точка 2 и чде параметр вдува $t<1$, этносится к течениям с отсосом из донной области, нижняя, где расположена точка 4 и $t>1$, относится к течениям со вдувом в донную область.

На фиг. 6, а представлена соответствующая зависимость величины донного давления от вдува (отсоса) в донную область, которая, как и кривая начальных данных, на фиг. 5 имеет вид замкнутого цикла.

Течение в следе со вдувом в донную область можно рассматривать с двух точек зрения:

1) как установившееся течение с внешним источником дополнительного расхода, когда масса газа в донной области постоянна;
2) как квазиустановившееся течение, когда источник или сток дополнительного расхода представляет собой след, а донная область оказывается аккумулятором массы.

Со второй точки врения при отсутствии вдува (отсоса) извне квазистационарное течение в следе в

Фиг. 4

Фиг: 5

каждый момент времени соответствует заданным внешним условиям (M_{∞}, δ_{s} и x_{s}) и величине донного давления. Определяемый этими условиями расход из следа, представляющий здесь вдув в' донную область, приводит к измеңению массы газа в донной области или изменению донного давления.

Возможность пренебречь нестационарностью в следе обусловлена тем, что характерное время распространения акустических возмущений в донной области $t_{1}=l^{\circ} / a$ существенно меньше характерного времени квазистационарного изменения донной области $t_{2}=l^{\circ} / u^{\circ}: t_{1} \preccurlyeq t_{2}$ (l° - длина изобарической области, a - характерная скорость звука, u° - характерная скорость возвратного течения в донной области).

Картины течения, изображенные на фиг. 1 , относятся к стационарным состояниям 1 и 3 на фиг. 5 ; картины квазистационарного течения в состояниях 2 и 4, полученные интегрированием системы (1.4), приведены на фиг. 6 , е. Если посредством некоторого начального возбуждения след из стационарного состояния 3 переходит без изменения донного давления и массы газа в донной области в состояние 3^{\prime}, то возникает квазистационарное течение, в котором след становится стоком массы (состояние 4), опораживает донную область и уменьшает донное давление в ней до другого стационарного состояния 1. Новое возмущение 1 - 1^{\prime}, в котором след становится источником массы (состояние 2), наполняет донную область п увеличивает донное давление, пока система не возвратится в состояние 3 (по кривой $1^{\prime}-2-3$ фиг. 5).

Таким образом, в возмущенном скачком ближнем следе оказываются возможными квазистационарные колебания (типа релаксационных), при которых происходят и соответствующие колебания донного давтения. Зависимости всех параметров течения от времени находятся с помоцць

уравнения неразрывности для массы газа в донной области

$$
\begin{equation*}
\frac{d}{d t}\left(\rho^{\circ} S\right)=(\rho u)_{+} h, \quad \rho^{\circ}=\frac{p^{\circ}}{R T^{\circ}} \tag{3.1}
\end{equation*}
$$

Здесь ρ° и T° - плотность и температура газа в донной области, S объем изобарической донной области (единичной толщины), h-высота торца.

Иначе уравнение (3.1) можно записать в виде

$$
\begin{equation*}
\left(\frac{S}{h^{2}}\right) \frac{h}{a^{*}} \frac{1}{q_{\infty}}\left(\frac{2}{\gamma+1}\right)^{\kappa} \frac{d \pi^{\circ}}{d t}=\rho u \quad\left(x=-\frac{1}{2} \frac{\gamma+1}{\gamma-1}\right) \tag{3.2}
\end{equation*}
$$

В уравнении (3.2) в соответствии с результатами расчетов принято, что $d S / d t \approx$ ≈ 0. Поскольку цикл, приведенный на фиг. 6, a, связывает величину вдува в донную область $\rho и$ п донноө давление π°, то уравнение (3.2) интегрпруется в квадратурах. Продолжжительность дикла (период) колебаний определяется выражкением

$$
\begin{equation*}
\left.\bar{t}=\frac{t a^{*}}{h}=\left(\frac{S}{h^{2}}\right) \frac{1}{q_{\infty}}\left(\frac{2}{\gamma+1}\right)^{x}\left[\int_{\pi_{3}^{\circ}}^{n_{1} \circ} \frac{d \pi^{\circ}}{\rho u_{+}}+{ }_{\pi_{1} \circ}^{\pi_{3}^{\circ}{ }^{\circ}} \frac{d \pi^{\circ}}{\rho u_{-}}\right)\right] \tag{3.3}
\end{equation*}
$$

Здесь индексы плюс и минус относятся соответственно к кривой $3^{\prime}-4-1$ и $1^{\prime}-2-3$ на фит. 5 и означают либо вдув в донную область (из следа), либо отсос из донной области (в след).

Результаты расчетов по формуле (3.3) с использованием данных фиг. 6, a и для случая $h=10^{-2} \boldsymbol{m}$ приведены на фиг. 6, 6 в виде кривой регулярных колөбаний донного давления при $M_{\infty}=3.0, \delta_{s} \approx 5^{\circ}, x_{s}=6.0$. Амплитуда колебаний $\pi^{\circ-1} \Delta \pi^{\circ}=0.38$, частота колебаний $n=\tau^{-1}=2901 /$ сек.

Если связать механизм возбуждения рассматриваемых колебаний с крупномасштабными турбулентными возмущениями в следе тиша больших вихрей, то колебания должны иметь стохастический характер. Интенсивнссть возмущений, которые сями по себе не сказываются на средней вели-

чине донного давления, можно характеризовать величиной Δm° - возмущением профиля скорости в начальном сечении ближнего следа. Как видно из цикла начальных состояний, приведенного на фиг. 5 , наименьшее значение Δm°, необходимое для перехода от течения со вдувом к течению с отсосом или наоборот, получается вблизи стационарных состояний, на отрезках $1=1^{\prime}$ и $3=3^{\prime}$. При этом $\Delta m_{1-1} 1^{\circ}>\Delta m_{3-3^{\prime}}^{\circ}$, следовательно переход $3=3^{\prime}$ может реализоваться чаще, чем переход $1=1^{\prime}$. Поэтому одно ие стационарных состояний следа оказывается преимущественным.

Из высказанной гипотезы относительно механизма возбуждения рассматриваемых колебаний следует, что колебания донного давления должны иметь нерегулярный характер. Вероятность повторения колебаний вида фиг. 6, б связана с характером крупномасштабной турбулентности в следе. Амплитуда релаксационных колебаний не может превышать максимальной разности давлений, относящихся к двум стационарным состояниям следа. Одно из стационарных состояний должно быть преимущественным; продолжительность отдельных колебаний определяется только их амплитудой по формуле (3.3).
4. Описанный ниже эксперимент был поставлен на модели плоского обратного сопла Прапдтля - Майера (так называемого тарельчатого сопла) с целью изучения только низкочастотных релаксационных колебаний донного давления, возникающих при взаимодействии скачка нерасчетности со следом. В тарельчатых соплах переход

Фис. 7, $a, ~ б$
от режима течения с замкнутой донной областью (когда пульсации донного давления отсутствуют) к режиму течения с разомкнутой донной областью (имеются интенсивные пульсации [4]) происходит в результате взаимодействия скачка нерасчетносги со следом (фиг. 7); при этом возникают наиболее интенсивные пульсации.

Сопло (фиг. 7) было спрофилировано по линии тока течения Правдтля - Майера, угол наклона потока в критическом сечении по отношению к оси сопла составлял $42^{\text {, }}$ расчетное число $M=2.65$. Высота торца тарельчатого тела равнллась 20 мм. В торце размещалось два одинаковых тензометрических датчика давления (диаметр мембраны равнялся 9 мм; толщина $0.01-0.02$ мм, собственная частота датчика $\omega \approx$

На фиг. 7,6 приведена типичная осциллограмма колебаний донного давления на торце тарельчатого тела при взаимодействии скачка нерасчетности со следом. Видно, что механизм возбуждения колебаний имеет вероятностный характер, одно из стадионарных значений донного давления оказывается преимущественным; амплитуда колебаний практически равна разности давлений в двух стапионарных состояниях следа. Средняя частота колебаний $n=250$ сек κ^{-1}, амплитуда $\pi^{\circ}-1 \Delta \pi^{\circ}=0.5$. Полученные результаты количественно близки к расчетным данным (фиг. 6).

В заключение автор выражает благодарность Г. Г. Черному и Г. Н. Абрамовичу за полезное обсуждение работы и Л. В. Капрановой, Т. С. Соболевой и З. А. Донсковой за помощь в проведении расчетов.

Поступило 22 VIII 1969
ЛИТЕРАТУРА

1. Alber I. E., Lees L. Integral theory for supersonic turbulent base flow. AIAA Journal, 1968, vol. 6, No. 7.
2. Гогй Іл. В., Соболева Г. С., Степавов Г. Ю. Взаимодействие турбулентного следа с внешним потоком. Изв. АН СССР, МЖГ, 1969, № 3.
3. Г о ги пІ Л. В. Расчет критических давлений присоединения и отрыва турбулентного пограничного слоя в сверхзвуковом потоке. Изв. АН СССР, МЖГ, 1968, № 4.
4. Mueller T. J., H a ll Ir. Ch. R. Separated flow region within a planar expansion deflection nozzle. J. Spacecraft., 1968, vol. 5, No. 6.
