О ВЫБОРЕ ГИПОТЕЗЫ ТУРБУЛЕНТНОСТИ В ТЕОРИИ ДОННОГО ДАВЛЕНИЯ

К. Е. ЮРЧЕНОК (Ленинград)

Из существующих теорий донного давления наибольшее распространение и разнитие получила теория Чепмена - Корста. Основные положения этой теории для ламинарных течений в донной области были сформулированы Чепменом [1], для торино и советания с постояние с постояние с постояние с постояние и петалих теории, хорошо известных из многочисленных работ советских и зарубежных авторов, ответим, что в последние годы некоторые положения теории Корста подверглись критике и уточнению [3, 4].

в частности, в работе Нэша [3] было показано, что основное допущение теории Корста о равенстве полного давления на разделяющей линии тока статическому давлению за замыкающим течение скачком уплотнения является неточным. Нэш экспериментально установил, что параметр присоединения N, характеризующий давле-
ние в точке присоединения (N = (p, - p,) / (p, - p,), p, - давление в точке при-
соединения, p, - донное давление, p, - давление за замыкающим с ния) при свердовудовша слоростил (по принцов жере до не = 2) равой тесло, и не толщины пограничного слоя в точке отрыва и дан метод, позволяющий произвести этот учет [4].

Выводы, сделанные Нэшем, послужили поводом для дискуссии [5]. При этом обращает на себя внимание то обстоятельство, что в процессе дискуссии не обсуждался вопрос о влиянии на величину донного давления одного из основных параметров теории Корста - скорости на разделяющей линии тока. Вместе с тем, вопрос этот представляется нетривиальным, так как в зависимости от выбора «гипотезы турбулентности» решение задачи о турбулентном перемешивании в донной области может привести к существенному различию в значениях скорости на разделяющей линии тока.

В данной работе содержатся результаты расчета скорости на разделяющей линии тока для одной из гипотез о коэффициенте турбулентного перемешивания. При этом рассматривался случай как отсутствия, так и наличия теплообмена между донной областью и внешним потоком. Полученные в результате расчета зависимости для адиабатических зон смешения сравниваются с зависимостями, полученными для дря адиабатических зон смешения сравниваются с зависимостями, полученными для других типотез турбулентности [2, 3, 6-8]. Отмечается существенно сти на разделяющей линии тока на величину донного давления.
1. Определяемые скорости на разделяющей «нулевой» линии тока. Рассмотрим для

простоты обтекание плоской ступеньки полубесконечным потоком газа, движущимся простоты оотекание плоской ступеньки получесконечным потоком газа, движущимся
co сверхзвуковой скоростью. Будем считать, что после поворота в веере волн раз-
ряжения профиль скорости является однородным (толщина потранично

 Q_{MT} . 1

Здесь ф-функция тока, ξ -продольная координата, и - продольная скорость, о-

 $\frac{\partial u}{\partial \xi} = \frac{\partial}{\partial \psi} \left(\rho^2 \varepsilon u \frac{\partial u}{\partial \psi} \right)$

Для решения поставленной задачи ис-

 (1.1)

плотность газа, в - коэффициент турбулентного перемешивания (турбулентный аналог коэффициента кинематической вязкости).

Удобство переменных Мизеса в рассматриваемом случае заключается в том, что скорость по на разделяющей линии тока находится путем непосредственного интегрирования уравнения (1.1) при граничных условиях

$$
u = U_1 \quad (\psi > 0), \qquad u = 0 \quad (\psi < 0) \qquad \text{npu} \quad \xi = 0 \tag{1.2}
$$

Если принять, что турбулентное число Прандтля равно единице, то из условия лодобия полей скорости и полной энтальпии в зоне смешения и из уравнения состояния

$$
p = \rho RT \tag{1.3}
$$

вытекает следующая зависимость плотности от скорости:

$$
\rho^{\circ} = [1 - C_1^2][H_2^{\circ} + (1 - H_2^{\circ})u^{\circ} - C_1^2u^{\circ}]^{-1} \qquad H = c_pT + \frac{1}{2}u^2
$$

$$
C^2 = \frac{1}{2}(k-1)M^2[1 + \frac{1}{2}(k-1)M^2]^{-1}
$$

$$
u^{\circ} = u / U_1, \qquad H_2^{\circ} \Rightarrow H_2/H_1, \qquad \rho^{\circ} = o / \rho_1.
$$
 (1.4)

Здесь p — давление, T — температура, R — гезовая постоянная, H — полнан он-
тальпия, c_p — удельная теплоемкость при постоянном давлении, M — число Маха,
 C — число Крокко. Индексом 1 обозначены парметры на г внешнего изоэнтропического потока; индексом 2 обозначены параметры на границе зоны смешения с донной областью.

Для дальнейшего необходимо принять гипотезу о характере изменения коэффициента турбулентного перемешивания с в зоне смешения.

В данной работе использовалась гипотеза

$$
\rho \mathbf{8} = f(\xi) \tag{1.5}
$$

Согласно равенству (1.5), коэффициент турбулентного перемешивания является. Функцией как продольной, так и поперечной координаты. Выражение (1.5) с различподводители на продолжании функции и подводительно при подводители с при подводители и функции / (5) получило широкое распространение в теории нами и подводители функции / (5) получило широкое распространение в теории функции $f(\xi)$, так как конечной целью анализа является получение скорости на раздолжный деревизительно после принятия и при последников совращать по подарить дели по совращать как. должаларся линии волю, поставили отсудать, положения сечения, определяемого координатой &.

Принимая во внимание равенства (1.5) и (1.4), преобразуем уравнение (1.1). к виду

$$
\frac{\partial u^{\circ}}{\partial \xi^{\circ}} = \frac{\partial}{\partial \psi} \left[R(u^{\circ}) u^{\circ} \frac{\partial u^{\circ}}{\partial \psi} \right]
$$
(1.6)

Здесь

$$
\xi^{\circ} = \int_{0}^{1} f(\xi) U_{1} \rho_{1}^{2} (1 - C_{1}^{2}) d\xi, \quad R(u^{\circ}) = \frac{1}{H_{2}^{\circ} + (1 - H_{2}^{\circ}) u^{\circ} - C_{1}^{2} u^{\circ 2}} \quad (1.7),
$$

Для интегрирования удобнее всего вместо u° ввести функцию $z = {u^{\circ}}^{\sharp}$. В этом случае уравнение (1.6) и граничные условия (1.2) имеют вид

$$
\frac{\partial z}{\partial \xi^{\circ}} = \nu \overline{z} \frac{\partial}{\partial \psi} \left(R(z) \frac{\partial z}{\partial \psi} \right)
$$
(1.8)

$$
z = 1 \quad (\psi > 0), \qquad z = 0 \quad (\psi < 0) \qquad \text{npu} \; \xi^{\circ} = 0 \tag{1.9},
$$

Для переменной $\eta = \psi / \gamma \overline{\xi}^{\circ}$ поставленная задача (1.8), (1.9) допускает автомо-
дельное решение. В этом случае будем иметь

$$
(R(z)z')' + \frac{1}{2} \eta z' z^{-1/2} = 0
$$
\n(1.10)

$$
z \rightarrow 1
$$
 npn $\eta \rightarrow +\infty$, $z \rightarrow 0$ npn $\eta \rightarrow -\infty$ (1.11)

Штрих означает производную по переменной п. Отсюда имеем

$$
z = 1 - \left(\int_{\infty}^{1} R(z)B(z, \eta)\xi d\eta\right) \left(\int_{\infty}^{\infty} R(z)B(z, \eta)d\eta\right)^{-1}
$$
(1.12)

$$
B(z, \eta) = \exp\left[-\frac{1}{2}\int_{0}^{\eta} \frac{R(z)\eta}{z^{1/2}}d\eta\right]\xi
$$

Вычисление z может быть проведено методом последовательных приближений. Скорость по разделяющей линии тока определяется равенством u_0 ° = $\sqrt{z(0)}$. Отметим, что функция $R(z)$ имеет вид (1.7) с тем отличием, что величину и° следует заменить. на γ 2. Расчет скорости на разделяющей линии тока был выполнен на машине БЭСМ-2. Изв. АН СССР, Механика жидкости и газа, № 6, 1968

Результаты расчета приведены в таблице.

2. Сравнение скоростей на разделяющей линии тока, вычисленных при различных гипотезах о коэффициенте турбулентного перемешивания. В работе Корста [2] для нахождения профиля скоростей в зоне смешения использовалось весьма упропенное уравнение движения, представляющее собой турбулентный аналог известно-
пенное уравнение движения, представляющее собой турбулентный аналог известно-
o уравнения Озеена. Профиль скоростей, полу-

ченный в результате интегрирования этого уравнения, имеет вид

$$
u^{\circ} = \frac{1}{2} \left(1 + \text{erf} \frac{\sigma x}{y} \right) \tag{2.1}
$$

где о - эмпирическая постоянная турбулентности. Используя профиль скоростей (2.1) и интегральные условия сохранения массы и количества движения Корст нашел зависимость скорости на разделяющей линии тока от числа Маха при отсутствии теплообмена между внешним потоком и донной областью (фиг. 2, кривая 1). В работе Нэша [3] справедливо было отмечено, что использование профиля (2.1) для расчета скорости на разделяющей линии тока приведет к завышенным значениям этого параметра при больших
числах М. Поэтому Нэш для определения u_0 °(M) принял зависимость

$$
u_0^2 = 0.348 + 0.018M \tag{2.2}
$$

которая дает значения параметра u_0 °(М), лежащие между значениями Корста и значениями, получаемыми при линейном профиле

скоростей в зоне смешения (фиг. 2, кривая 2).
В работе В. Я. Нейланда [7] рассматривалось влияние теплообмена на донное давление при ламинарном и турбулентном режимах течения в области смощения. При расчете скорости на разделяющей линии тока в турбулентной области для определения коэффициента турбулентного перемешивания использовалась гипотеза о пути перемешивания

$$
\epsilon = c^2 x^2 \frac{\partial u}{\partial u} \tag{2.3}
$$

Здесь с - эмпирическая постоянная. Турбулентное число Прандтля принималось равным единице. Результаты расчета для случая отсутствия теплообмена приведены на фиг. 2 (кривая 3).

газа посвящена работа М. П. Тетерина [8]. В этой работе среди других результатов были получены значения скорости на разделяющей линии тока при отсутствии теплообмена и турбулентном числе Прандтля, равном 0.5. Для с так же, как и в пре-дыдущей работе [7] использовалось выражение (2.3). Решение было получено путем интегрирования полной системы уравнений пограничного слоя, включая уравнение

интеграризации полном системы уравнении погранитного сист, вкига как уравнению
Энергии. Результирующая кривая приведена на фиг. 2 (кривая 4).
На этой же фигуре представлены еще две кривые. Кривая 5 построена на осно-
вани на (получена в предположении, что коэффициент турбулентного перемешивания постоянен по сечению области смешения и зависит только от продольной координаты, T. e. $\varepsilon = \varepsilon(\xi)$. Кривая 6 показывает, что непосредственное использование полуэмпирических закономерностей, справедливых для течений несжимаемой жидкости, для исследования течений газа при больших числах Маха может привести к неверным результатам.

48

Из сравнения кривых, приведенных на фиг. 2, видно, что при числе Прандтля, равном единице, соотношения для ε (1.5) и (2.3), а также зависимость, предложенная Нэшем (2.2), приводят к близким результатам.

Кривая Корста 1 располагается заметно выше всех других кривых (исключая 6). судественное различие между кривыми 4 и 3, полученными соответственно для зна-
чений числа Прандтля $P = 0.5$ и $P = 1$, по-видимому, свидетельствует о необходи-
мости учета отличия турбулентного числа Прандтля от единицы сти на разделяющей линии тока. Окончательное суждение о справедливости той или иной гипотезы о коэффициенте турбулентного перемешивания можно будет сделать, очевидно, лишь посло экспериментальных исследований зависимости ио (М)

3. Расчет донного давления. На основании полученных в работе значений скороо. касчет допада давления, на основании полученных в расстве опачении следу-
СТИ на разделяющей линии тока (см. таблицу) были проведены расчеты донного дав-
ления за плоской ступенькой по методу Корста с учетом отличия п лообмена между донной областью и внешним потоком, так и с теплообменом $H_2^{\circ} \leq 1$ (фиг. 3). Наличие пограничного слоя в точке отрыва не учитывалось.

ими. о). назначие по рани него слов в готом отрива по утверживают.
На этой же фигуре приведена кривая пунктир, рассчитанная по зависимости
 u_0 (M) (кривая 4, фиг. 2), полученной М. П. Тетериным [8]. Видно, что отличие ч ла Прандтля от единицы $(P_r = 0.5)$ заметно влияет на величину донного дав-

Фиг. 3

На фиг. 4 изображены кривая 1 изменения донного давления за ступенькой от числа М, полученная Корстом [2], и кривая 2, полученная по данным таблицы (первая строка). Параметр присоединения и в том и в другом случае принимался равным строна). Наражетр присоединении и в том и в другом случае принималом равницию
единице. Из сравнения этих кривых видно, что незначительное различие в величине скорости на разделяющей линии тока приводит к заметному различию в величине
донного давления. Это обстоятельство указывает на необходимость осторожного подхода к оценке точности расчетов донного давления, основывающихся на различных гипотезах турбулентности.

Поступило 13 V 1968

ЛИТЕРАТУРА

- 1. Chapman D. An analysis of base pressure at supersonic velocites and comparison with experiment. NACA Rep., 1951, No. 1051.
- 2. Korst H. H. A theory for base pressures in transonic and supersonic flow. Trans ASME, Ser. E. J. Appl. Mech., 1956, vol. 23, No. 4.
3. N a s h J. F. An analysis of the dimensional turbulent base flow, including the ef-
- fect of the approaching boundary layer. Aeronaut. Res. Council Repts and Mem., 1963, No. 3344.
- 4. Nash J. F. The effect of an unital boundary layer on the development of a turbu-
lent free shear layer. Aeronaut. Res. Council Current Rapers, 1962, No. 682.
- 5. Ваззан А. Р. Обзор последних исследований в области турбулентных сверхавуковых донных течений. Ракетная техника и космонавтика, 1965, № 6.
- 6. Лойцянский Л. Г. К теории плоских ламинарных и турбулентных струй.
- "Энергомашиностроение. Тр. Ленингр. политехн. ин-та, 1955, № 176.
- 7. Нейланд В. Я. О влиянии теплообмена и турбулентного течения в области
8. Тетерини на характеристики срывных зон. Инж. ж., 1964, т. 4, вып. 1.
8. Тетерин М. П. Турбулентный пограничный слой свободной струи сжимаемого
- газа в спутном и встречном потоках. Инж. ж., 1964, т. 4, вып. 2.
- Механика жидкости и газа, № 6