Так, например, точное решение Ринглеба [³] интегрируется при $k=1.4$. Выражение (3.2) можно проинтегрировать для $k=1.5$. Переменные x и y для этого частного случая записываются следующим образом:

$$
\begin{align*}
& x=1 / 4\left[6 \sin 2 \theta \lambda^{2}-1.8 \lambda^{4} \sin 2 \theta-1.2 \lambda^{4} \sin 3 \theta \cos \theta\right] \\
& y=1 / 4\left[6 \cos 2 \theta \lambda^{2}-1.8 \lambda^{4} \cos 2 \theta-1.2 \lambda^{4} \sin 3 \theta \sin \theta\right] \tag{3.3}
\end{align*}
$$

На фиг. 2 представлены линии тока $\psi=$ const, в физической плоскости течения соответствующие репению (1.10) в плоскости годографа. Линии $1,2,3$ соответствуют линиям тока в плоскости годографа - 1, 2, 3. Предельная линия L в физической плоскости построена по координатам (3.3) по значениям λ и θ, удовлетворяющим соотношению (2.4).

В плоскости годографа каждая линия тока 1,2 и 3 пересекает предельную линиюв двух точках. В физической плоскости этим точкам соответствуют по две точки возврата $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$ (фиг. 2).

Две соседние криволинейные линии тока $C E$ и $D F$ можно рассматривать как твердые стенки, которые не достигают предельной линии L. Тогда этот случай иллюстрирует пример гладкого трансзвукового течения в канале.

Поступило 14 XII 1965

ЛИТЕРАТУРА

1. Ч а п лыгин С. А. О газовых струях. Гостехиздат, 1949.
2. Мизес Р. Математическая теория течений сжимаемой жидкости. Изд. иностр. литер., 1961.
3. Б а й III и-и. Введение в теорию течения сжимаемой жидкости. Изд. иностр. литер., 1962.

АІІРОКСИМИРУЮЩИЕ УРАВНЕНИЯ ПЛОСКОГО ТЕЧЕНИЯ ГАЗА И ИХ ИНТЕГРИРОВАНИЕ

Ф. с. чУРиков (Орджоникидзе)

Известно, что нелинейная система уравнений плоского стационарного изэнтропического потенциального течения газа допускает линеаризацию и преобразование к одному эквивалентному линейному диффференциальному уравнению второго порядка. Это уравнение для случая совершенного газа имеет вид [1]:

$$
\begin{gather*}
\frac{1-\tau^{2}}{\tau^{2}\left(1-\alpha \tau^{2}\right)} \frac{\partial^{2} \Phi}{\partial \theta^{2}}+\frac{\partial^{2} \Phi}{\partial \tau^{2}}+\frac{\tau\left(1-\tau^{2}\right)}{\tau^{2}\left(1-\alpha \tau^{2}\right)} \frac{\partial \Phi}{\partial \tau}=0 \tag{0.1}\\
\left(\tau=w / c_{k}, w=\sqrt{u^{2}+v^{2}}, \alpha=(\gamma-1) /(\gamma+1) ; \gamma=c_{p} / c_{v}\right)
\end{gather*}
$$

Здесь θ - угол, образованный вектором скорости с осью x, u, v - проекции скорости на оси $x, y ; c_{k}$ - критическая скорость, постоянная во всей области течения.

Искомая функция Φ и потенциал скоростей φ связаны соотношением

$$
\begin{equation*}
\Phi=-\varphi+w \frac{\partial \Phi}{\partial w} \tag{0.2}
\end{equation*}
$$

Координаты \dot{x}, y физической плоскости* выражаются через Φ, w, θ

$$
\begin{equation*}
x=\cos \theta \frac{\partial \Phi}{\partial w}-\frac{\sin \theta}{w} \frac{\partial \Phi}{\partial w}, \quad y=\sin \theta \frac{\partial \Phi}{\partial w}+\frac{\cos \theta}{w} \frac{\partial \Phi}{\partial \theta} \tag{0.3}
\end{equation*}
$$

Уравнение (0.1) является уравнением смешанного тиша с линией перехода $\tau=1$, причем для скоростей $\tau<1$ оно эллиштическое, а для скоростей $\tau>1$ - гиперболическое.

Если бы оказалось возможным проинтегрировать уравнение (0.1), тогда из (0.2) и (0.3) определяются потенциал φ и координаты x, y, после чего легко вычисляются все другие величины, характеризующие течение. Всякое решение уравнения (0.1), если из него исключены при помощи краевых условий произвольные элементы (постоянные и функции), будет определять некоторое течение газа.

Как известно, нахождение точных решений уравнения (0.1) наталкивается на непреодоленные до сего времени математические трудности, поэтому для получения решения краевых задач газовой динамики в замкнутом виде приходится заменять уравнение (0.1) более простыми уравнениями, являющимися его достаточно хоропими аппроксимациями в том или другом интервале изменения модуля скорости.

В этой работе дается вывод некоторых аппроксимирующих уравнений и рассматриваются методы их интегрирования.
§ 1. Вывод аппроксимирующих уравнений. 1°. Получим сначала аппроксимирующее уравнение для околозвуковых течений газа.

Введем вместо τ новую переменную σ при помощи формулы

$$
\begin{equation*}
\sigma=\frac{1-\tau^{2}}{\tau^{2}\left(1-\alpha \tau^{2}\right)} \quad\left(\alpha=\frac{1}{6}, 0<\tau<\tau_{\max }=\sqrt{\overline{6}}\right) \tag{1.1}
\end{equation*}
$$

Здесь $1-\alpha \tau^{2}>0$, так как $\tau_{\max }$ определяется из уравнения $1-\alpha \tau^{2} \max ^{=}=0$. Последние предположения означают, что все дальнейшее относится к двухатомному газу (воздух).

Для построенвя графика функции (1.1) найдем ее первую и вторую производные

$$
\begin{gather*}
-\frac{1}{2} \frac{d \sigma}{d \tau}=\frac{\alpha \tau^{4}-2 \alpha \tau^{2}+1}{\tau^{3}\left(1-\alpha \tau^{2}\right)^{2}} \tag{1.2}\\
\frac{1}{2} \frac{d^{2} \sigma}{d \tau^{2}}=\frac{3 \alpha^{2} \tau^{6}+(1-10 \alpha) \alpha \tau^{4}+9 \alpha \tau^{2}-3}{\tau^{4}\left(1-\alpha \tau^{2}\right)^{3}} \tag{1.3}
\end{gather*}
$$

Рассматривая трехчлен, стоящий в правой части формулы (1.2), убеждаемся, что он всюду положителен. Отсюда заключаем, что первая производная, отрицательна во всей области изменения модуля скорости, и, слөдовательно, функция (1.1) является убывающей.

Для определения координат точки шерегиба из (1.3) получаем уравнение

$$
3 \alpha^{2} \tau^{6}+(1-10 \alpha) \alpha \tau^{4}+9 \alpha \tau^{2}-3=0
$$

Исследуя последнее уравнение, находим, что оно имеет один действительный корень, а это значит, что график функции имеет лишь одну точку перегиба.

В результате вычислений получаем следующие значения для координат τ_{1}, σ_{1} точки перегиба:

$$
\tau_{1}=1.364, \quad \sigma_{1}=-0.664
$$

График функции (1.1) в виде кривой, начерченной сплошной линией, приведен на фигуре. Будем функцию (1.1) в окрестности переходной линии аппрокскмировать при помощи функции ${ }^{1}$

$$
\begin{equation*}
\tau=\exp (-k \delta) \tag{1.4}
\end{equation*}
$$

где постоянная $k=5 / 12$ определяется из условия, чтобы истинная и аппроксимирующая кривые имели в точке $\tau=1$ общую касательную. Кривая (1.4) приведева на фигуре пунктирной линией.

[^0]Заменяя в уравнении (0.1), при помощи (1.4), τ на σ, получим

$$
\begin{equation*}
\eta \frac{\partial^{2} \Phi}{\partial \xi^{2}}+e^{2 n} \frac{\partial^{2} \Phi}{\partial \eta^{2}}+\left(e^{2 \eta}-\frac{\eta}{k}\right) \frac{\partial \Phi}{\partial \eta}=0 \quad(\eta=k \sigma, \xi=\sqrt{k} \theta) \tag{1.5}
\end{equation*}
$$

Это уравнение является уравнением смешанного типа с переходной линией $\eta=0$, ги䒑ерболическоө - при $\eta<0$ п эллиштическое - при $\eta>0$.

У равнение (1.5), в свою очередь, можно использовать для получения более простых уравнений в окрестности переходной линии. Одно из таких уравнений, которое будет рассмотрено ниже, получается, если разложить функцию $e^{2 \eta}$ в ряд в окрестности $\eta=0$ и пренебречь, по сравнению с единицей, всеми членами, содержащими η в первой и более высоких степенях. Уравнение, полученное таким путем, имеет вид

$$
\begin{equation*}
\eta \frac{\partial^{2} \Phi}{\partial \xi^{2}}+\frac{\partial^{2} \Phi}{\partial \eta^{2}}+\frac{\partial \Phi}{\partial \eta}=0 \tag{1.6}
\end{equation*}
$$

2°. Переходим к выводу аппроксимирующего уравнения плоского течения газа с большой сверхзвуковой скоростью. Рассмотрим у равнение (0.1) в следующем интервале изменения модуля скорости

$$
1+\delta<\tau<\tau_{\max }
$$

где $\delta>0$. При достаточно большом δ функцию (1.1) будем аппроксимировать при помощи функции

$$
\begin{equation*}
\sigma=-\left(1-\alpha \tau^{2}\right)^{-1} \tag{1.7}
\end{equation*}
$$

имеющей ту же вертикальную асимптоту. График этой функции начерчен на фигуре штрих-пунктирной линией. При номощи (1.7) уравнение (0.1) преобразуется к виду

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial \theta^{2}}-\left(1-\alpha \tau^{2}\right) \frac{\partial^{2} \Phi}{\partial w^{2}}+w \frac{\partial \Phi}{\partial w}=0 \tag{1.8}
\end{equation*}
$$

Вводя характеристические координаты
$\xi=\theta+\frac{1}{\sqrt{\bar{\alpha}}} \arcsin \sqrt{\alpha} \tau, \quad \eta=\theta-\frac{1}{V \bar{\alpha}} \arcsin V \bar{\alpha} \tau$ приведем уравнение (1.8) к виду:
$\frac{\partial^{2} \Phi}{\partial \xi \partial \eta}+\frac{1-\alpha}{4 \sqrt{\alpha}} \operatorname{tg} \frac{\sqrt{\alpha}(\xi-\eta)}{2}\left(\frac{\partial \Phi}{\partial \xi}-\frac{\partial \Phi}{\partial \eta}\right)=0$
Это уравнение для новой искомой функции p преобразуется к виду, не содержащему первых производных

$$
\begin{gather*}
\frac{\partial^{2} p}{\partial \xi \partial \eta}+\left[\frac{(1-\alpha)(1-3 \alpha)}{16 \alpha \cos ^{2}[1 / 2 \sqrt{\alpha}(\xi-\eta)]}-\frac{(1-\alpha)^{2}}{16 \alpha}\right] p=0 \\
\left(p=\Phi \cos \left[\frac{\sqrt{\alpha}(\xi-\eta)}{2}\right]^{\frac{1-\alpha}{2}}\right) \tag{1.10}
\end{gather*}
$$

Последнее уравнение является аппроксимирующқм уравнением плоского течения газа для определенного диапазона больших сверхзвуковых скоростей, при которых аппроксвмирующая функция (1.7) дает требуемую условиями расчета точность.
§ 2. Интегрирование уравнений плоского течения газа. 1°. Для нахожддения частных репений уравнения (1.6) воспользуемся методом разделения переменных. Полагая $\Phi=P(\xi) Q(\eta)$ и обозначая разделительную ковстанту через λ, из (1.6) имеем

$$
\begin{equation*}
P^{\prime \prime}(\xi)-\lambda P(\xi)=0, \quad Q^{\prime \prime}(\eta)+Q^{\prime}(\eta)+\lambda \eta Q(\eta)=0 \tag{2.1}
\end{equation*}
$$

Так как общее решение уравнения (2.1) для P известно, то дело сводится к нахождению Q. Уравнение (2.1) для Q преобразуется к виду

$$
\begin{equation*}
q^{\prime \prime}+(\lambda \eta-1 / 4) q=0 \quad\left(q=Q \exp { }^{1} / 2 \eta\right) \tag{2.2}
\end{equation*}
$$

Вводя вместо η переменную r при помощи подстановки $r=\lambda \eta-1 / 4$, запишем последнее уравнение в виде

$$
\begin{equation*}
\lambda^{2} q^{\prime \prime}+r q=0 \tag{2.3}
\end{equation*}
$$

Общее решение уравнения (2.3) имеет вид

$$
q=\sqrt{r} Z_{1 / 3}\left(-\frac{2}{3 \lambda} r^{3 / 2}\right) \quad\left(Z_{1 / 3}=c_{1} J_{1 / 3}+c_{2} Y_{1 / 3}\right)
$$

где $J_{1 / \mathrm{s}}, Y_{1 / \mathrm{s}}$ - функции Бесселя первого и второго рода, соответственно, c_{1}, c_{2} — произвольные постоянные.

Зная общее решение уравнения (2.3) и возвращаясь к исходным переменным, получим частные решения уравнения (1.6), которые могут быть использованы для решения задач плоского течения газа с околозвуковыми скоростями.
2°. Покажем, что для уравнения (1.10) возможно построить функцию Римана. Для этой цели используем результаты работы [${ }^{2}$], которые позволяют найти функцию Римана для уравнения (1.10) при условии, что известны функции Римана для уравнений

$$
\begin{gather*}
\frac{\partial^{2} p}{\partial \xi \partial \eta}+\frac{(1-\alpha)(1-3 \alpha)}{16 \alpha}\left(\cos ^{2} \frac{\sqrt{\alpha}(\xi-\eta)}{2}\right)^{-1} p=0 \\
\frac{\partial^{2} p}{\partial \xi \partial \eta}-\frac{(1-\alpha)^{2}}{16 \alpha} p=0 \tag{2.4}
\end{gather*}
$$

Заметим, что $(1-\alpha)(1-3 \alpha) / 16 \alpha>0$, так как для любого газа $0<\alpha \leqslant 1 / 4$.
Второе из уравнений (2.4) является приведенным телеграфным уравнением, для которого функция Римана известна. Обозначая ее через $R_{2}\left(\xi, \eta ; \xi_{0}, \eta_{0}\right)$, будем иметь

$$
R_{2}=J_{0}\left(i \frac{1-\alpha}{2 \alpha} \sqrt{\left(\xi-\xi_{0}\right)\left(\eta-\eta_{0}\right)}\right)
$$

где J_{0} - функция Бесселя нулевого порядка.
Можно показать, что функция Римана $R_{1}\left(\xi, \eta ; \xi_{0}, \eta_{0}\right)$ для первого уравнения (2.4) имеет вид

$$
\begin{gathered}
R_{1}=F\left(\frac{1}{2}+A(\alpha), \quad \frac{1}{2}-A(\alpha), \quad 1 ; \frac{\sin \left(\xi-\xi_{0}\right) \sin \left(\eta-\eta_{0}\right)}{\sin \left(\xi_{0}-\eta_{0}\right) \sin (\xi-\eta)}\right) \\
A(\alpha)=\left(\frac{1}{4}+\frac{(1-\alpha)(3-\alpha)}{16 \alpha}\right)^{1 / 2}
\end{gathered}
$$

где F - гишергеометрическая функция.
Теперь функция Римана $\hat{R}\left(\xi, \eta ; \xi_{0}, \eta_{0}\right.$) для уравнения (1.10), согласно работе [2], определится по формуле

$$
\begin{gathered}
R=F+\int_{\eta-n_{0}}^{\xi-\xi_{0}} F\left(\frac{1}{2}+A(\alpha), \frac{1}{2}-A(\alpha), 1 ; \frac{\sin \left(\xi-\xi_{0}\right) \sin \left(\eta-\eta_{0}\right)}{\sin \xi_{0} \sin (\xi-t)} \times\right. \\
\\
\times \frac{\partial}{\partial t} J_{0}\left(i \frac{1-\alpha}{2 \sqrt{\alpha}} \sqrt{\left(\xi-\xi_{0}\right) t}\right) d t
\end{gathered}
$$

При помощи функции Римана находим решение задачи Коши для уравнения (1.10). Возвращаясь в плоскость годографа, получпм решение соответствующей задачи для уравнения (1.8), а затем, переходя в плоскость течения по известной функции Ф, находим репение данной задачи в исходных переменных.

Поступила 17 VIII 1965

ЛИТЕРАТУРА

1. Л а п а у Л. Д., Лифпи Е Е. М. Механика сплопных сред. Гостехиздат, 1953.
2. Олевский М. Н. О функции Римана для дифференциального уравнения $u_{x x}-u_{t t}+\left[\rho_{1}(x)+\rho_{2}(t)\right] u=0$. Докл. АН СССР, 1953, т. 87, № 3.

[^0]: ${ }^{1}$ Следует заметить, что лучшей аппроксимации истинной кривой, как видно из графика, приведенного на фигуре, можно было бы добиться при помощи котангенсоиды с точкой перегиба в точке (τ_{1}, σ_{1}), но такая аппроксимация приводит к значительно более сложным аппроксимирующим уравнениям.

