## © 1999 г. А.Д. САВЕЛЬЕВ

## РАСЧЕТ УСТРАНЕНИЯ ЗОНЫ ОТРЫВА ТУРБУЛЕНТНОГО ПОГРАНИЧНОГО СЛОЯ С ПОМОЩЬЮ ОТСОСА


#### Abstract

Численно моделируется устранение посредством отсоса отрывной зоны турбулентного пограничного слоя, вызванной косым скачком уплотнения. Уравнения Рейнольдса и модифицированного варианта модели турбулентности Уилкокса решаются с помощью разностной схемы четвертого порядка аппроксимации. Приводятся распределения давления и поверхностного трения, полученные при различных значениях скорости отсоса. Показан эффект ускорения циркуляционного течения в процессе устранения зоны отрыва.


Явление отрыва потока может возникать на поверхности сверхзвуковых летательных аппаратов под воздействием различных аэродинамических устройств. Существование и протяженность отрывного течения определяется местными числами Маха и Рейнольдса, а характер обтекания элементов поверхности значительно отличается от безотрывного. Одним из немногих механизмов, способных эффективно воздействовать на параметры течения в пограничном слое, является отсос газа с поверхности. Уменьшение толщины пограничного слоя и снижение давления, сопутствующие отсосу газа из отрывной зоны, приводят к уменьшению ее размеров или полной ликвидации.

В настоящее время исследования подобных задач все чаще проводят численно на основе уравнений Навье - Стокса и Рейнольдса вязкого сжимаемого газа. Примером расчета подобного течения для случая ламинарного пограничного слоя может служить [1]. В статье рассматривается задача об устранении отрывной зоны турбулентного пограничного слоя.

1. Постановка задачи. Рассматриваемое течение схематически изображено на фиг. 1 в системе координат $x, y$. На плоской пластине, расположенной вдоль оси $x$ при значении координаты $y=0$ ( $y$ по нормали к поверхности), формируется турбулентный пограничный слой 1 . Подающий на пластину косой скачок уплотнения 3 вызывает отрыв потока с образованием зоны возвратного течения. Отсос газа из области взаимодействия 4 приводит к уменьшению размеров отрыва и с дальнейшим ростом интенсивности отсоса - к полному устранению зоны возвратного течения. Зона отсоса отмечена стрелками.

Решение задачи определяется посредством численного интегрирования нестационарных двухмерных уравнений Рейньльдса усредненного турбулентного течения. Обезразмеренные стандартным способом по параметрам набегающего потока и характерному линейному размеру, они имеют вид

$$
\begin{align*}
& \frac{\partial}{\partial t} \rho+\frac{\partial}{\partial x_{i}}\left(\rho u_{i}\right)=0, \frac{\partial}{\partial t}\left(\rho u_{i}\right)+\frac{\partial}{\partial x_{i}}\left(\rho u_{i} u_{i}+\sigma_{i j}\right)=0 \\
& \frac{\partial}{\partial t}(\rho e)+\frac{\partial}{\partial x_{i}}\left(\rho e u_{i}+u_{i} \sigma_{i j}-q_{i}\right)=0 \tag{1.1}
\end{align*}
$$



Фиг. 1. Схема течения: 1 - пограничный слой, 2 - головной скачок уплотнения, 3 - падающий скачок, 4 - область взаимодействия, 5 - отраженный скачок; стрелками отмечен участок отсоса

Здесь $t, x_{i}$ - время и декартовы координаты, $\rho, u_{i}, e=\gamma^{-1} h+0,5 u_{i} u_{i}$ - усредненные среднемассовые плотность, компоненты вектора скорости и полная энергия, $h=C_{p} T-$ энтальпия ( $\gamma$ - отношение удельных теплоемкостей, $C_{p}$ - теплоемкость при постоянном давлении, $T$ - температура).

Тензор напряжений $\sigma_{i j}$ и тепловой поток $q_{i}$ представляются так

$$
\begin{aligned}
\sigma_{i j} & =\delta_{i j} p-2 \mu \operatorname{Re}^{-1}\left[S_{i j}-\frac{1}{3} \frac{\partial}{\partial x_{k}}\left(u_{k} \delta_{i j}\right)\right]+\sigma_{i j}^{t} \\
q_{i} & =\mu \operatorname{Re}^{-1} \operatorname{Pr}^{-1} \frac{\partial}{\partial x_{i}} h-q_{i}^{t}
\end{aligned}
$$

Тензоры скоростей деформации $S_{i j}$, рейнольдсовых напряжений $\sigma_{i j}^{t}$ и турбулентный тепловой поток $q_{i j}^{t}$ имеют вид

$$
\begin{aligned}
& S_{i j}=\dot{0}, 5\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \\
& \sigma_{i j}^{t}=\frac{2}{3} \rho k \delta_{i j}-2 \mu_{t} \operatorname{Re}^{-1}\left[S_{i j}-\frac{1}{3} \frac{\partial}{\partial x_{k}}\left(u_{k} \delta_{i j}\right)\right] \\
& q_{i}^{t}=-\mu_{t} \operatorname{Re}^{-1} \operatorname{Pr}^{-1} \frac{\partial}{\partial x_{i}} h
\end{aligned}
$$

Здесь $p$ - давление, $k$ - кинетическая энергия турбулентности, $\mu$ и $\mu_{t}$ - коэффициенты молекулярной и турбулентной вязкостей, $\operatorname{Pr}$ и $\operatorname{Pr}_{t}$ - ламинарное и турбулентное числа Прандтля, Re - число Рейнольдса.

Система уравнений дополняется уравнением состояния

$$
\begin{equation*}
p=\gamma^{-1}(\gamma-1) \rho h \tag{1.2}
\end{equation*}
$$

и зависимостью коэффициента молекулярной вязкости от энтальпии в виде формулы Сазерленда [2].

Расчет турбулентных параметров течения основан на решении уравнений дифференциальной двухпараметрической $q-g$-модели турбулентности, полученной из известной $k-\omega$-модели Уилкокса в варианте для течений газа с высокими числами Рейнольдса [3]. В [4] показано, что $k$ - $\omega$-модель лучше предсказывает профили ско-

рости в пограничном слое и поверхностное трение, чем различные варианты $k-\varepsilon$-модели турбулентности [5]. В отличие от них модель Уилкокса не использует каких-либо демпфирующих функций или расстояния до поверхности. Недостатки же ее связаны с использованием условия равенства нулю производной псевдочастоты $\omega$ по нормали к поверхности, что приводит к сильной зависимости рассчитываемых значений $\omega$ от распределения узлов в пристеночной области течения и, следовательно, требует очень подробной сетки. Последнее обстоятельство делает модель Уилкокса практически непригодной для прикладных ра̀счетов.

Для преодоления этой проблемы, согласно рекомендациям [6], осуществляется переход к новой переменной $g=\left(C_{\mu} \omega\right)^{-1 / 2}\left(C_{\mu}=0,09\right)$, имеющей размерность корня квадратного от времени. В качестве граничного на стенке используется условие $g=0$, что, без сомнения, очень удобно. Ближайший к поверхности узел сетки при этом должен располагаться на расстоянии $y^{+} \leqslant 2,5$.

В качестве второго параметра модели целесообразно использовать. не турбулентную энергию $k$, а линейно зависящую от расстояния до поверхности интенсивность турбулентности $q=k^{1 / 2}$, как это было сделано Кокли в [7]. Уравнения для $q$ и $g$ выглядят так

$$
\begin{align*}
& \frac{\partial}{\partial t}(\rho q)+\frac{\partial}{\partial x_{i}}\left(\rho u_{i} q\right)=\operatorname{Re}^{-1} \frac{\partial}{\partial x_{i}}\left[\left(\mu+\operatorname{Rr}_{q}^{-1} \mu_{t}\right) \frac{\partial q}{\partial x_{i}}\right]+\frac{C_{\mu} \rho q g^{2}}{R_{\mu}}\left(\mu+\operatorname{Pr}_{q}^{-1} \mu_{t}\right) \frac{\partial q}{\partial x_{i}} \frac{\partial q}{\partial x_{i}}+ \\
& +\frac{\rho q}{2}\left[C_{\mu} S g^{2}-\frac{2}{3} D-\frac{\operatorname{Re} C_{\mu} \rho q^{2}}{R_{\mu}}\right]  \tag{1.3}\\
& \frac{\partial}{\partial t}(\rho g)+\frac{\partial}{\partial x_{i}}\left(\rho u_{i} g\right)=\operatorname{Re}^{-1} \frac{\partial}{\partial x_{i}}\left[\left(\mu+\operatorname{Rr}_{g}^{-1} \mu_{t}\right) \frac{\partial g}{\partial x_{i}}\right]-\frac{3 C_{\mu} \rho q^{2} g}{R_{\mu}}\left(\mu+\operatorname{Pr}_{g}^{-1} \mu_{t}\right) \frac{\partial g}{\partial x_{i}} \frac{\partial g}{\partial x_{i}}+ \\
& +\frac{\rho g}{2}\left[-\alpha\left(C_{\mu} S g^{2}-\frac{2}{3} D\right)+\frac{\operatorname{Re} C_{\mu} \beta \rho q^{2}}{R_{\mu}}\right] \\
& S=\left(S_{i j}-\frac{1}{3} D\right) \frac{\partial u_{i}}{\partial x_{j}}, \quad D=\frac{\partial}{\partial x_{k}}\left(u_{k} \delta_{i j}\right) \\
& \mu_{t}=\operatorname{Re} C_{\mu} \rho(q g)^{2}, \quad R_{\mu}=\max \left(\alpha_{\mu} \mu, \mu_{t}\right), \quad \operatorname{Pr}_{q}=\operatorname{Pr}_{g}=2, \quad \alpha=0,555, \quad \beta=0,833
\end{align*}
$$

Параметр $R_{\mu}$ введен по рекомендации [6] для повышения устойчивости расчетов. Значение $\alpha_{\mu}$ не должно превышать уровня $\mu_{t} / \mu$ для ближайших к поверхности узлов конкретной расчетной сетки.

Формирование пограничного слоя (первый этап решения задачи) рассчитывается в области ABDE, показанной на фиг. 1. Положение границы BD выбирается таким образом, чтобы головной скачок уплотнения 2 ее не пересекал. На границах AB и BD фиксируются параметры невозмущенного потока. На пластине GE задаются условия прилипания для скорости и температура поверхности, а плотность определяется путем решения в соответствующих стенке узлах сетки уравнения неразрывности - первого в системе (1.1). Значения турбулентных параметров $q$ и $g$ на поверхности задаются равными нулю. На участке границы AG ставятся условия симметрии течения, а на границе DE - свободного вытекания. В качестве начальных условий используются значения параметров течения в набегающем потоке на бесконечности.

Полученные результаты используются на втором этапе решения задачи как начальные данные для расчета взаимодействия косого скачка уплотнения с пограничным слоем, формирования зоны отрыва и устранения ее посредством отсоса. Решение ищется в области FCDE. В этом случае на границе FC и участке верхней

границы СН фиксируются параметры потока, полученные расчетным путем. На другом участке верхней границы $H D$ задаются параметры течения за скачком уплотнения при известных числе Маха набегающего потока и угле наклона скачка. B процессе решения формируются падающий скачок 3, область взаимодействия 4 и отраженный скачок 5. Для моделирования устранения зоны возвратного течения на некотором участке поверхности пластины внутри области взаимодействия фиксируется постоянное значение вертикальной составляющей вектора скорости $v_{w}$.
2. Метод решения. Используется неявный метод установления по времени [8], предполагающий переход к обобщенной криволинейной системе координат. Исходные уравнения при этом преобразуются, сохраняя дивергентную форму. Решение преобразованных уравнений осуществляется на равномерной в расчетной плоскости сетке, что позволяет применять схемы высокого порядка аппроксимации. В [8] для конвективных членов уравнений использовалась компактная разностная схема 3-го порядка [9], а для диффузных - обычная схема 2-го порядка. В данном случае с целью развития методики и повышения надежности результатов применяются пятиточечные разностные схемы 4-го порядка аппроксимации.

Разностное представление первых производных вида $\partial f / \partial x$ на сетке $\omega_{x}=\left\{x_{i}=i h, h=\right.$ const $\}$ выглядит так

$$
(2+3 s) f_{i-1}^{\prime}+8 f_{i}^{\prime}+(2-3 s) f_{i+1}^{\prime}=\frac{1}{2 h}\left[-s f_{i-2}-(12+8 s) f_{i-1}+18 s f_{i}+(12-8 s) f_{i+1}-s f_{i+2}\right]
$$

где $|s| \leqslant 1$ - параметр, учитывающий направление характеристик течения. В приграничных узлах применяются подобные односторонние разностные схемы 3-го и 4-го порядков аппроксимации.

Разностный аналог второй производной $\partial(\mu \partial f / \partial x)$ в точке $i$ имеет вид

$$
\begin{aligned}
& \left(\mu f^{\prime}\right)_{i}^{\prime}=\frac{1}{6 h}\left[8\left(\mu_{i+1 / 2} f_{i+1 / 2}^{\prime}-\mu_{i-1 / 2} f_{i-1 / 2}^{\prime}\right)-\mu_{i+1} f_{i+1}^{\prime}+\mu_{i-1} f_{i-1}^{\prime}\right] \\
& \mu_{i \pm 1 / 2}=\frac{1}{16}\left[9\left(\mu_{i}+\mu_{i \pm 1}\right)-\mu_{i \mp 1}-\mu_{i \pm 2}\right] \\
& f_{i \pm 1 / 2}^{\prime}=\frac{1}{24 h}\left[27\left(\mp f_{i} \pm f_{i \pm 1}\right) \pm f_{i \mp 1} \mp f_{i \pm 2}\right] \\
& f_{i \pm 1}^{\prime}=\frac{1}{12 h}\left(\mp f_{i \mp 2} \pm 6 f_{i \mp 1} \mp 18 f_{i} \pm 10 f_{i \pm 1} \pm 3 f_{i \pm 2}\right)
\end{aligned}
$$

В приграничных точках для вторых производных используются обычные трехточечные формулы. Смешанные производные и производные в источниковых членах уравнений приближаются известными центральными разностями 4-го порядка аппроксимации

$$
f_{i}^{\prime}=\frac{1}{12 h}\left[8\left(f_{i+1}-f_{i-1}\right)-f_{i+2}+f_{i-2}\right]
$$

Метрические коэффициенты преобразованных уравнений также рассчитываются по этой формуле. Алгоритм не использует так называемых ограничителей потоков и членов типа искусственной вязкости с целью не вносить связанных с ними искажений в область вязкого течения.
3. Полученные результаты. Расчеты проводились при числе Маха набегающего потока $\mathrm{M}_{\infty}=3$ и числе Рейнольдса $2,5 \cdot 10^{7}$, рассчитанном по параметрам набегающего потока и расстоянию от передней кромки пластины до точки ее пересечения линией скачка 3. Угол наклона скачка составлял $30^{\circ}$. Давление за отраженным скачком более чем в 5 раз превосходило давление в набегающем потоке. Температура набегающего потока задаваласљ $T_{\infty}=120 \mathrm{~K}$, а поверхности - 300 K . Фиксировались значения турбулентных параметров $q_{\infty}=10^{-3}$ и $g_{\infty}=10^{-2}$, что обеспечивало низкий уровень коэф-


Фиг. 2. Профили скорости: 1 - до области взаимодействия, 2 - внутри отрывной зоны, 3 - после присоединения потока, линии 4 и 5 - ветви универсального профиля скорости

Фиг. 3. Распределения на поверхности относительного давления $p_{w}(a)$ и коэффициента трения $C_{f}\left(\right.$ б) для трех значений скорости отсоса (1-3): $v_{w}=0,-0,01,-0,02$

фициента турбулентной вязкости вне пограничного слоя. Решение задачи о формировании пограничного слоя осуществлялось на неравномерной сетке со 180 узлами в направлении вдоль пластины и 50 по нормали к ней. Для расчета взаимодействия скачка уплотнения с пограничным слоем использовалась сетка в $100 \times 50$ узлов. Сгущение узлов осуществлялось вдоль координаты $x$ в области взаимодействия скачка уплотнения с пограничным слоем и в нормальном направлении к поверхности пластины. Минимальное расстояние между узлами составляло $5 \cdot 10^{-6}$, что соответствовало $y^{+} \approx 0,5$. Участок отсоса был ограничен значениями координаты $0,97 \leqslant x \leqslant 1$. На него приходилось 9 сеточных узлов.

Полученные при решении задачи о взаимодействии скачка уплотнения с пограничным слоем профили продольной составляющей вектора скорости $u^{+}=u / u_{t}$ представлены на фиг. 2 в зависимости от логарифма безразмерного расстояния $y^{+}=\operatorname{Re} \rho u_{t} y \mu^{-1}$, где $u_{t}=\left[\tau_{w} /\left(\operatorname{Re} \rho_{w}\right)\right]^{1 / 2}$ - динамическая скорость, $\tau_{w}=\mu_{w} u_{y}^{\prime}$ - поверхностное трение (индекс $w$ относится к параметрам на стенке). Линейный закон скорости в вязком подслое хорошо выполняется для всех трех участков течения. Логарифмический участок профиля 3 заметно ниже теоретического, что связано с высоким уровнем поверхностного трения за участком присоединения. Излом профиля указывает на наличие в поле течения отраженного скачка уплотнения.

Полученные в расчетах распределения на поверхности пластины относительно давления $p_{\text {wь }}=p_{w} / p_{\infty}$ и местного коэффициента трения $C_{f}=2 \tau_{w} /\left(\operatorname{Re} \rho_{\infty} u_{\infty}^{-2}\right)$ в окрестности зоны взаимодействия представлены на фиг. 3. Участок отсоса показан стрелками под рисунком. Зона отрывного течения соответствует области отрицательных значений $C_{f}$. Видно, что если при $v_{w}=-0,01$ размеры возвратного течения уменьшаются примерно на $40 \%$, то при $v_{w}=-0,02$ отрыв пограничного слоя полностью устраняется.

Невязкое распределение давления на поверхности пластины имеет скачкообразный переход от значения в набегающем потоке до значения за отраженным скачком. Наличие отрыва пограничного слоя делает распределение давления более пологим с хорошо выраженной изобарической зоной плато. Согласно [10], экспериментальные значения относительного давления $p_{w \infty}$ для плато турбулентного пограничного слоя


Фиг. 4. Профили продольной компоненты вектора скорости и (a) и интенсивности турбулентности $q(\sigma)$ внутри области взаимодействия ( $1-3$ ) для $v_{w}=0,-0,01,-0,02 ; 4$ - перед областью взаимодействия

при $\mathrm{M}_{\infty}=3$ лежат в диапазоне от 2,4 до 2,75 . Расчетное значение составило 2,65 . В точках отрыва и присоединения получены значения $p_{\text {woo }}=1,6$ и 3,6. Эмпирическая зависимость [11] протяженности отрывной области турбулентного течения от соотношения относительных давлений в точке присоединения и зоне плато позволяет оценить ее размер в $4 \delta$, где $\delta$ - толщина пограничного слоя перед зоной взаимодействия. При расчетном значении $\delta=0,014$ протяженность отрыва должна составлять 0,056 , что хорошо согласуется с полученным значением 0,06 .

Отсос газа из области взаимодействия приводит к значительному уменьшению толщины пограничного слоя. Если начальная толщина пограничного слоя в зоне отрыва равнялась 0,024 , а за участком присоединения 0,019 , то в случае $\dot{v}_{w}=-0,01$ для тех же значений координаты $x$ она составляет соответственно 0,02 и 0,016 , а при $v_{w}=-0,02-0,014$ и 0,011 . Поскольку при отсосе удаляются ближайшие к поверхности слои течения, происходит рост поверхностного трения. Уровень давления до точки падения скачка снижается, а за ней возрастает, т.е. распределение давления становится ближе к невязкому. При этом максимальный градиент давления внутри области взаимодействия увеличивается, что при некоторых значениях $v_{w}$ приводит к росту интенсивности возвратного течения. Иллюстрацией данного эффекта могут служить графики фиг. 3, б. Видно, что максимальное значение поверхностного трения внутри отрывной зоны при $v_{w}=-0,01$ почти в 6 раз превосходит уровень трения при отсутствии отсоса, а точка присоединения сдвигается несколько ниже по течению. Дальнейшее увеличение значения $v_{w}$ приводит к такому изменению профиля скорости, когда поток становится способным преодолеть имеющий место градиент давления безотрывно.

Профили продольной компоненты вектора скорости и и интенсивности турбулентности $q$, соответствующие значению координаты $x=0,99$, представлены на фиг. 4. Видно, что при $v_{w}=-0,01$ скорости возвратного течения в циркуляционной зоне у стенки выше, чем при $v_{w}=0$. Максимальные значения интенсивности турбулентности для различных значений $v_{w}$ практически одинаковы, что, видимо, определяется близкими условиями генерации турбулентной энергии. С увеличением ско-

рости отсоса расстояние от поверхности до координаты максимального значения $q$ уменьшается.

Заключение. Моделирование отсоса газа из области взаимодействия косого скачка уплотнения с турбулентным пограничным слоем продемонстрировало устранение зоны отрывного течения. При этом происходило уменьшение толщины пограничного слоя и рост поверхностного трения. Распределение давления по своему характеру становилось близким к невязкому. В процессе устранения отрывной зоны с ростом давления присоединения наблюдалось увеличение интенсивности возвратного течения.

Использованная в расчетах $q-g$-модель турбулентности позволила удовлетворительно описать профили скорости пограничного слоя, давление в изобарической области и протяженность зоны отрыва. Отсутствие демпфирующих функций и простые граничные условия являются ее преимуществами перед другими моделями турбулентности.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 96-01-00825).

## СПИСОК ЛИТЕРАТУРЫ

1. Tassa Y., Sankar N.L. Effect of suction on a shock-separetted boundary layer. A numerical study // AIAA Journal. 1979. V. 17. № 11. P. 1268-1270.
2. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. 840 с.
3. Wilcox D.C. Reassessment of the scale determining equation for advanced turbulence models // AIAA Journal. 1988. V. 26. № 11. P. 1299-1310.
4. Wilcox D.C. Comparison of two-equation turbulence models for boundary layers with pressure gradient // AIAA Journal. 1993. V. 31. № 8. P. 1414-1431.
5. Jones W.P., Launder B.E. The prediction of laminarization with a twoequation mdel of turbulence // Intern. J. Heat and Mass Transfer. 1972. V. 15. № 2. P. 301-314.
6. Kalitzin G., Gould A.R.B., Benton J.J. Application of two-equation turbulence model in aircraft design // AIAA Paper. 1996. № 96-0327. 13p.
7. Coacley T.I. Turbulence modeling methods for the compressible Navier-Stokes equations // AIAA Paper. 1983. № 83-1693. 13p.
8. Савельев А.Д. Неявный метод расчета турбулентных течений вязкого сжимаемого газа // Журн. вычисл. математики и мат. физики. 1998. Т. 38. № 3. С. 520-531.
9. Толстых А.И. О методе численного решения уравнений Навье - Стокса сжимаемого газа в широком диапазоне чисел Рейнольдса // Докл. АН СССР. 1973. Т. 210. № 1. С. 48-51.
10. Голгиш Л.В., Степанов Г.Ю. Турбулентные отрывочные течения. М.: Наука, 1979. 367 с.
11. Erdos J., Pallone A. Shock-boundary layer interactoin and flow separation // Proc. Heat Transfer and Fluid Mechanics Inst. Standford (Calif.): Univ. Press, 1962. P. 239-254.

## Москва

